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ABSTRACT21

Gamma-Ray Bursts (GRBs), due to their high luminosities are detected up to redshift22

10, and thus have the potential to be vital cosmological probes of early processes in23

the universe. Fulfilling this potential requires a large sample of GRBs with known24

redshifts, but due to observational limitations, only 11% have known redshifts (z).25

There have been numerous attempts to estimate redshifts via correlation studies, most26

of which have led to inaccurate predictions. To overcome this, we estimated GRB27

redshift via an ensemble supervised machine learning model that uses X-ray afterglows28

of long-duration GRBs observed by the Neil Gehrels Swift Observatory. The estimated29

redshifts are strongly correlated (a Pearson coefficient of 0.93) and have a root mean30

square error, namely the square root of the average squared error ⟨∆z2⟩, of 0.46 with the31

observed redshifts showing the reliability of this method. The addition of GRB afterglow32

parameters improves the predictions considerably by 63% compared to previous results33

in peer-reviewed literature. Finally, we use our machine learning model to infer the34

redshifts of 154 GRBs, which increase the known redshifts of long GRBs with plateaus35

by 94%, a significant milestone for enhancing GRB population studies that require large36
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samples with redshift.37

1. INTRODUCTION38

Gamma-Ray Bursts (GRBs) are the most luminous events after the Big Bang. Due to their high39

luminosities, they are detected up to redshift z = 9.4 (Cucchiara et al. 2011), and thus have the40

potential to be vital cosmological probes of processes in the early universe. Studying GRBs enables41

us to deepen our knowledge about the early universe and track how the universe evolves over time42

since the GRB redshift range goes from 0.0085 (Galama et al. 1998)) to the highest redshifts observed43

(between 8 and 9.4, (Cucchiara et al. 2011; Tanvir et al. 2008). GRBs (observed mainly in γ-rays,44

X-rays, and sometimes in optical) are traditionally classified in short duration GRBs (SGRBs), with45

T90 < 2s, where T90 is the time interval during which the GRB emits 90% of its total observed fluence46

(energy emitted in γ-rays) and long duration GRBs (LGRBs) where T90 > 2s. Observationally, GRBs47

are characterized by prompt emission, the main emission observed from hard X-rays to high-energy48

-rays and sometimes in optical (Vestrand et al. 2005; Beskin et al. 2010; Gorbovskoy et al. 2012;49

Vestrand et al. 2014), and the afterglow emission (Costa et al. 1997; van Paradijs et al. 1997; Piro50

et al. 1998), a long-lasting multi-wavelength emission, following the prompt, observed in X-rays,51

optical, and sometimes radio. The afterglow sometimes contains the plateau emission feature where52

the flux during the plateau remains constant (Nousek et al. 2006; Rowlinson et al. 2014; Zhang et al.53

2006; Dainotti et al. 2008; Sakamoto et al. 2007; O’Brien et al. 2006; Zaninoni et al. 2013; Liang54

et al. 2007). Plateaus are observed in 42% of X-ray afterglows (Evans et al. 2009; Li et al. 2018) and55

in 30% of optical afterglows (Vestrand et al. 2005; Kann et al. 2006; Zeh et al. 2006; Dainotti et al.56

2020; Panaitescu & Vestrand 2008, 2011; Oates et al. 2012).57

Currently, the main issue in population studies is the lack of LGRB samples with known redshifts.58

The direct determination of the redshift of a GRB requires rapid localization and spectral information.59

One of the most powerful observatories that enable rapid detection and follow-up in multiwavelengths60

is the Neil Gehrels Swift observatory (hereafter Swift) (Gehrels et al. 2004). Swift uses an X-ray61

instrument for localization and can obtain spectra and sometimes redshift with the onboard UVOT62

instrument. The Swift satellite consists of three main instruments: the Burst Alert Telescope (BAT)63

(Burrows et al. 2005), the X-ray Telescope (XRT) (Barthelmy et al. 2005), and the Ultraviolet/Optical64

Telescope (UVOT) (Roming et al. 2005). These instruments work together to detect, localize, and65

collect data on GRBs and their afterglows across various wavelengths, including γ-rays, X-rays, and66

ultraviolet/optical.67

Swift, with its localization capabilities, has paved the way to the high-z Universe. Despite all68

the advantages of localization provided by Swift, still, only 26.2% (423) of Swift’s 1615 GRBs have69

known spectroscopic redshifts up to today’s date (7th of December, 2023). Redshift measurements,70

particularly high-z ones, are challenging due to limited telescope time and the paucity of active GRB71

follow-up programs.72

The machine learning (ML) is applied to the data, which is influenced by the observed73

sensitivity of the Swift satellite, e.g. flux limit, limiting energy band, occultation by74

the Earth (data unavailability), etc. The data in our sample are all taken from Swift.75

Thus, the biases are all related to fluxes, the limiting energy band, and the presence76
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of lightcurve gaps in relation to data observed by the same satellite. Therefore, we77

have a uniform bias, and since our generalization sample is also taken entirely from the78

Swift satellite, the impact of this bias is reflected in the same way both in the training79

set and in the generalization sample. This means that the impact of this bias in the80

prediction is similar to the biases we have in the observed sample. If one would like81

to apply a bias correction, for example, consider the Malmquist bias effect that allows82

only the brightest GRBs, with larger fluxes, to be observed, then one needs to employ83

the redshift. However, we cannot use the information of the redshift in training the84

ML models since the redshift is the variable we would need to determine. This, indeed,85

would induce a circularity argument. Thus, beyond the analysis of a posteriori bias86

correction, we cannot apply any further correction to the initial data. If we had applied87

any such treatment to the data, we would have induced a data bleeding problem in our88

training set. So, in summary, the impact on the training sample is negligible, considering89

that here we use a uniform data set both in the training and the generalization.90

Thus, efforts to determine the redshift of GRBs are of paramount importance. One of the key91

goals of increasing the sample of GRBs with known redshift is to determine an accurate measure92

of the luminosity function (LF), which provides the number of bursts per unit luminosity, key to93

understanding the properties of GRB luminosities as a population, the energy release and emission94

mechanism of GRBs. Another relevant goal is the determination of the cosmic GRB formation rate95

(GRBFR), which provides the number of events per comoving volume and time, pivotal to under-96

standing the production of GRBs at various stages of the universe. As highlighted in Petrosian et al.97

(2015), there exists a discrepancy between LGRBs compared to the overall rates of star formation98

within the lower redshift range (0 < z < 1). This result has been found by several groups with99

differences, and thus, the debate is still open. Obtaining more redshifts becomes crucial for settling100

such a debate.101

Another great advantage of having more GRBs with redshift is the possibility of using GRBs as102

standardized candles with empirical relations between distance-dependent and intrinsic properties of103

GRBs. Amongst the earliest of these efforts, is the Dainotti Relation (Dainotti et al. 2008, 2011,104

2015; Dainotti et al. 2017), a roughly inversely proportional relationship between the rest-frame time105

at the end of the plateau phase (Ta/(1 + z)) and its corresponding luminosity (La). Later Dainotti106

et al. (2013) showed that via the use of the Efron and Petrosian method (Efron & Petrosian (1992)),107

this relation is intrinsic and not due to selection biases. This relation has also been discovered in108

the optical and radio emission (Dainotti et al. 2020; Levine et al. 2022). It has also been extended109

in three dimensions in X-rays, where the peak prompt luminosity Lpeak has been added to the two-110

dimensional Dainotti relation (Dainotti et al. 2016, 2017; Dainotti et al. 2020). In addition, GRBs111

observed by Fermi-LAT and detailed in the Second Fermi GRB Catalog (Ajello et al. 2019), which112

show the existence of the plateau in γ-rays, obey this correlation as well (Dainotti et al. 2021).113

Continuing on the extension of this relation in other wavelengths, this three-dimensional relation has114

been found in optical too (Dainotti et al. 2022a).115

Both the two and three-dimensional relations have been used as a valuable cosmological tool (Car-116

done et al. 2009, 2010; Dainotti et al. 2013; Postnikov et al. 2014; Cao et al. 2021, 2022a,b; Dainotti117

et al. 2022b; Dainotti et al. 2023; Bargiacchi et al. 2023; Dainotti et al. 2023). Dainotti et al. (2022b),118

showed how the Dainotti relation used in combination with SNe Ia is able to obtain consistent re-119
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sults on matter density, ΩM to SNe Ia in the ΛCDM model with the added benefit of extending the120

distance ladder up to z = 5, a redshift far greater than the farthest observed SNe Ia observed up121

until z = 2.26 (Rodney & Riess 2015). Another large part of this paper discussed the prediction of122

the number of GRB observations that we would need to obtain the same precision as SNe Ia on the123

matter density, ΩM in the ΛCDM model as in Conley et al. (2011); Betoule et al. (2014); Scolnic124

et al. (2018).125

Indeed, it has been discussed in Dainotti et al. (2022c) that we need 789 GRBs to reach the same126

precision of SNe Ia in Conley et al. (2011). Thus, we need to add 567 more GRBs to our current127

sample of 222 GRBs with X-ray plateaus and known redshift.128

To increase the number of GRBs with redshifts, there have been several attempts in this direction129

by finding correlations between distance-independent quantities (peak flux, duration of afterglow130

plateau, as the already mentioned Dainotti et al. (2008); Dainotti et al. (2013), etc) and distance-131

dependent GRB properties (prompt emission peak luminosity) to find pseudo-redshifts for the GRBs132

with unknown redshift (Atteia (2003), Yonetoku et al. (2004), Dainotti et al. (2011)). The results of133

these analyses are all reliant on the luminosity distance (DL), a quantity that, by definition, not only134

depends on cosmology but small variations of the DL at high redshift are subject to large variations135

of the redshift. Thus, these results are inherently subject to inaccuracy. To avoid the issues caused136

by including DL in determining pseudo-redshifts, we undertake a new approach that relies on the use137

of ML algorithms to create our redshift predictions.138

The paper is structured as follows: in Sec. 1 we detail the problem of paucity of the redshifts, in139

Sec. 2 we describe the dataset. In Sec. 3, we describe our pipeline from how we process our data to140

select the variables to be used to how we build and test our models on our data. In Sec. 4 we discuss141

the performance of our model as well the predictions on the generalization set and we compare those142

results to the distribution of the existing set of redshifts. Finally in Sec. 5 we summarize and discuss143

the implications of these results.144

2. THE DATA SAMPLE145

In this study, we focus on GRBs observed in γ-rays and X-rays detected by the BAT and the XRT146

telescopes onboard the Swift. We used the data stored in the NASA Swift GRB Search Tool, and the147

Third Swift-BAT GRB Catalogue (Lien et al. 2016). Our initial step involves preprocessing the raw148

GRB data to ensure its quality and suitability for further analysis. Considering the distinct nature of149

various GRB classes, such as LGRBs and SGRBs, which can originate from different progenitors or150

the same progenitors in diverse environments, it is crucial to avoid blending the characteristics of these151

diverse classes. For this reason, our study focuses only on LGRBs. Thus, we exclude from our sample,152

taken from Dainotti et al. (2020) and Srinivasaragavan et al. (2020), SGRBs, SGRBs with extended153

emission (Norris & Bonnell 2006) and the intrinsically SGRBs (IS) which have T90/(1+ z) < 2s. The154

initially available features are the following:155

1. T90 - the time interval during which the GRB emits 90% of its total observed fluence (energy156

emitted in γ-rays).157

2. Fa - the flux at the end of the plateau emission.158

3. Ta - the time at the end of the plateau emission.159

4. α - the temporal power-law index after the end of the plateau emission.160

https://swift.gsfc.nasa.gov/archive/grb_table/
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5. β - the spectral index assuming a power-law for the spectral energy distribution in the range161

of the plateau emission.162

6. γ - the spectral index obtained as the time-averaged spectral fit from the Swift XRT163

Photon Counting mode data.164

7. Fluence - the energy fluence over T90 of the prompt emission in units of erg cm−2.165

8. PhotonIndex - the prompt photon index from the BAT Telescope of the photon energy166

distribution modeled with a power law.167

9. NH - The column density of neutral hydrogen along the line of sight.168

10. Peak Flux - The prompt peak photon flux in units of with unit of (number of photons) cm−2
169

s−1.170

The dataset with which we train and test our ML models contains 197 LGRBs with all the features171

listed above, called the predictors, as well as our response variable, the redshift. Furthermore,172

there are also 221 GRBs without a measured redshift and the same features. This set is called the173

generalization set. The ML models are used to predict the redshift of these GRBs.174

3. METHODOLOGY175

Fig. 1 shows the summarized flowchart for our methodology. The individual parts are expanded176

upon in the following subsections.177

3.1. Data Cleaning and Transformation178

Due to the wide range encompassed by specific variables, namely Peak Flux, Ta, Fluence, NH,179

T90, and Fa, we transformed these variables into log base-10 with the aim of enhancing prediction180

accuracy. The variables, α, β, γ, and PhotonIndex remain in the linear scale since the range in which181

they vary is of the order of unity. We then proceed to clean our data such that we exclude182

any non-physical values from our analysis or values which are unusual for the majority183

of GRBs such as α > 3 (2.5%), β > 3 (1%), γ > 3 (0.5%), Photon Index < 0 (0.5%) and184

log(NH) < 20 (8.6%) so that we can capture the average features of the GRBs. All these185

values are set to NA and then imputed (see Sec. 3.2). We exclude the values of α, β,186

and γ >3, because these belong to the tail of their respective distributions, as can be187

seen in Fig. 11. We also perform a similar transformation to our redshifts in which we create the188

new response variable log(1 + z). This results in a Gaussian distribution with a mean=0.48 and a189

standard deviation=0.128 for this response variable, rather than a distribution with tails as shown190

for the distribution of the redshift in the scatter matrix plot of Fig. 2. This new response variable191

is chosen similarly as in previous literature (Dainotti et al. (2021), Gibson et al. (2022), Narendra192

et al. (2022)), and it is a natural choice since it mimics the evolution of the variables. In addition,193

z+1 is a more natural parametrization of the cosmological variable z. We show the scatter matrix194

plot after the data cleaning and transformation, see Fig. 2.195196

3.2. Data Imputation: MICE197

Multivariate Imputation by Chained Equations (MICE, Van Buuren & Groothuis-Oudshoorn198

(2011)) can impute missing values for multiple variables using variables from the data set that are199
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Figure 1. The flowchart detailing each step of the pipeline. All yellow boxes represent indicate the number
of GRBs in the training set at each step of the process. Grey boxes are pre-processing steps. Orange boxes
indicate all steps involving model construction. Green boxes show all steps involving the generalization set
predictions. Blue boxes show all the post-processing steps with the training set.
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Figure 2. Scatter matrix plot of the data after the cleaning of the sample and variable transformation.

complete. MICE has the ability to create imputed values in R with a variety of different methods.200

Here, we use the predictive mean-matching method known as “midastouch” to create our model.201

We employ the “midastouch” approach, a predictive mean matching (PMM) technique introduced202

by Little & Rubin (2019). This method begins by populating missing values in a feature with its203

mean and subsequently estimating these values by training a model on the available complete data.204
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For each prediction, a probability is assigned based on its distance from the value imputed for the205

missing variable. The missing entry is imputed by randomly drawing from the observed values of the206

respective predictor, weighted according to the probability defined previously.207

This process is then repeated N times, after which the final substituted quantity for each missing208

value is determined by taking an average over the prediction of the value in each iteration.209

In previous literature (Gibson et al. 2022), similar methodologies have been applied to Active210

Galactic Nuclei data from the Fermi Fourth LAT catalog with no noticeable addition to the uncer-211

tainty of the resulting data distribution. In fact, the constructed ML model strictly benefits from its212

application due to the increased size of the dataset. Given that GRBs also exhibit similarly nonlinear213

trends within their features, we expect to see similar results in our own study.214

Here, we show the missing data in Fig. 3. The bottom x-axis shows the number of missing GRBs215

corresponding to the variable presented in the upper x-axis. The pink boxes show the missing GRB216

variables, while the blue boxes indicate GRBs with no missing data for given variables. We now217

detail the missing data points in our variables: 1 GRB has missing data in γ, 1 has missing data in218

PhotonIndex, 2 have missing data in β, 4 have missing data in log(Peak Flux), 5 have missing data219

in α, and 17 have missing data in log(NH). While log(T90), log(Fa), log(Ta), and log(Fluence) have220

no missing data points.221

3.2.1. Nested 10-fold Cross Validation and the Extensive Search222

Here, we describe a nested 100-iteration 10-fold cross-validation (10fCV) procedure that will be223

utilized in both the outlier removal and model construction stages. This procedure is called nested224

since it requires an external layer of cross-validation. 10fCV involves dividing our data set into 10225

distinct subsets, each containing 10 parts. We then iteratively train the model using 9 out of the 10226

subsets as training data and evaluate its performance on the remaining subset as a testing set. This227

procedure is repeated for each subset, allowing each subset to serve as a testing set, while the others228

are used for training. We average the prediction results across all the 100 iterations to obtain the229

mean prediction. The standard deviation of this distribution is the prediction error.230

The extensive search we perform uses the nested 100-iteration 10fCV. The procedure preparatory231

to the extensive search requires first building all possible formula candidates. These formulas are232

meant for two purposes. The first purpose is generating multiple models for the robust linear model233

(RLM) using the M-estimator procedure, as explained in Sec. 3.2.2. The second purpose is to234

create multiple models for both the Generalized Additive Model (GAM) (see in Sec. 3.3.2) and the235

Generalized Linear Model (GLM) (see in Sec. 3.3.1), both collectively used to construct the final236

ensemble method. We build the formulas described above with a generator function that employs237

the first-order features, which are the observed GRB variables, and the second-order variables, which238

are the multiplicative terms among the first-order variables. Then, the extensive search allows us to239

find the best formula among all formulas tested based on the correlation between the predicted and240

observed redshift and the root mean square error (RMSE), a measure of deviation from the model’s241

fit written for N data points as242

RMSE =

√∑N
i=1(xi − x̂i)2

N
, (1)243

where xi is the true response value for data point i, and x̂i is the respective predicted value.244
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Figure 3. The missing data in our sample. The red boxes show the missing GRB data points, while the blue
boxes indicate GRBs with no missing data for a given GRB variable presented in the top axis. The bottom
axis shows the number of missing GRBs per variable. The left axis represents the number of observations
that have missing data for a specific set of features. For example: there are 172 GRBs with no missing data,
13 GRBs with missing data in log(NH) data, 3 GRBs with missing data in α, and so on. The right axis
represents the number of features that are missing for that row.

For GAM, RLM, and GLM, each has its own individual cut-off for the correlation and RMSE.245

This cut allows us to choose the best formulas. Following this, we use these formulas to predict the246
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redshift of the test set. Next, we identify the formula corresponding to the highest correlation, the247

lowest RMSE, and the lowest median absolute deviation (MAD), which is the median of the absolute248

difference between each data point and the mean of the dataset given by249

MAD = Median(|xi − x̄|), (2)250

where xi are the data points and x̄ is the mean of the dataset x. Finally, we select the best formula251

from these based on the highest weight in the SuperLearner (detailed in Sec 3.3.3)252

3.2.2. Outlier Removal253

In order to remove outliers we use a preliminary robust regression method, M-estimation, which254

minimizes the residuals in a given model. The application of the M-estimator enables the fit of an255

RLM on the imputed data. We conduct an extensive search (see Sec. 3.2.1) to find an optimal256

formula for the RLM that best fits the data.257

To this end, we include square terms of one or multiple features of the data to capture potential258

non-linear relationships between our predictors and the response variable. The chosen model reads259

as follows:260

log(1 + z) = ( log(NH)2 + log(T90)
2 + log(Ta)

2 + log(NH)

+ PhotonIndex + log(T90) + log(Ta) + log(Fa))
2

+ log(PeakFlux) + log(Fa)
2 + PhotonIndex2 + log(PeakFlux)2.

(3)261

M-estimator is an alternative technique to the ordinary least squares method, which fits the function262

mentioned above to our data. The ordinary least squares method attempts to minimize the square263

of the residuals (called the L2 norm regression) by giving outliers of the data set a higher weight.264

This significantly affects the results of the regression fit. In contrast, the M-estimator attempts265

to minimize the sum of a function of residuals. The function chosen for our analysis is the Huber266

Function (Huber 1964). RLM is used for the detection of highly influential observations. We are using267

the implementation of RLM as described in the MASS package of R (Venables & Ripley 2002). Data268

points with weights falling below 0.5 undergo exclusion, a crucial step taken to counterbalance the269

influence that potentially problematic data points may exert on the model’s effectiveness. Following270

this outlier removal procedure, we eliminate 6 outliers (GRB050826, GRB051109B, GRB080916A,271

GRB111008A, GRB151112A, and GRB160327A), reducing the size of our data set to 191 GRBs.272

3.2.3. Feature Selection273

The preprocessed data is now divided into two sets: an 80% training set for model training and a274

20% test set for performance evaluation which is never used for the best model selection. We decide275

to reduce the number of variables to be investigated, and thus we select the most predictive features276

given the small data sample. To identify the most important features, we use the Least Absolute277

Shrinkage and Selection Operator (LASSO) method exclusively on the training set (Tibshirani 1996).278

To ensure the stability of the results, we perform LASSO for 100 iterations and obtain as a result the279

averaged weights for each predictor. To reduce the number of features we chose only those280

that have a non-zero LASSO weight. We extract the following features: log(T90), log(Fa),281

log(Ta), PhotonIndex, log(NH), and log(Peak Flux). These features will be used in all the successive282

steps of our analysis to find the most predictive model.283
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Figure 4. The weights assigned to the features by LASSO.

3.3. Model Construction284

Once the data has been preprocessed, we begin constructing an ensemble of supervised ML al-285

gorithms to model the relationships between the GRB features and their corresponding redshifts.286

Supervised ML leverages prior knowledge of the ‘training’ data on which ML models will be built,287

and their predictions will be tested on new data (the ‘test’ set). Parametric models use functions with288

a set of parameters whose coefficients are fine-tuned to fit the training data. These models, although289

simpler and faster to train, are however constrained by the functions. Non-parametric models, in290

contrast, without assuming a predefined function, are thus more flexible and powerful than para-291

metric models. However, they are prone to over-fitting, require large samples, and extensive running292

time. Semi-parametric models have a parametric and a non-parametric component, thus leveraging293

the advantages of both models.294

We begin our construction by testing a total of 115 different regression methods on 10 iterations295

of 10fCV. These 115 models include the best of the following ML algorithms, which were tested296

individually: Random forest models, with differing numbers of trees, ranging from 10 to 500; extreme297

gradient boosting models using the same tree combinations. Further, 92 models from the caret298

package (Kuhn & Max 2008) were also tested. And finally, a single support vector machine (SVM)299
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model was picked from a combination of 7921 models. These combinations were obtained by changing300

the various hyperparameters of the SVM model.301

Out of these 115 models 25 models were selected for obtaining the highest correlation during the302

surveys. Namely, these were GAM; GLM, Bayesian GLM, GLM Network, and Interaction GLM;303

Extreme Gradient Boosted trees; Recursive Partitioning and Regression Trees (RPart) and Random304

Forest as implemented by the caret package; Random Forest with Conditional Inference, R’s na-305

tive RPart, RPart with Pruning, Bagged Trees, Fast Implementation of Random Forest (ranger);306

Ridge; Stepwise Akaike Information Criterion, Interaction Stepwise Regression, Forward Stepwise307

Regression, and Classical Stepwise Regression; Feed Forward Neural Network; Regression Towards308

the Mean; Local Weigthed Regression; Linear Modeling; a tuned Kernel Support Vector Machine;309

Fast Multivariate Adaptive Regression Splines; and a scalable version of Lasso.310

Our search for the best ML models consistently exhibited a preference for linear parametric and311

semi-parametric models. The resilience of these models leads us to believe that standardizing a tuning312

methodology for the non-parametric models is not required for this work. As a general remark,313

we would like to stress that, in principle, the fully non-parametric models have the advantage of314

estimating complicated non-linear relationships between the response variable and the predictors as315

well as high-order interactions between features. Such non-parametric methods are very powerful316

when the data set contains many observations. However, they suffer from the so-called “curse of317

dimensionality”, which sets limits on the number of parameters one can efficiently estimate for a318

given sample size. This “curse” becomes more severe with a greater number of features. As a result,319

the fully non-parametric ML methods allow the use of only a limited number of features, e.g. when320

estimating redshifts based on small GRB training sets, as in this case.321

3.3.1. The Generalized Linear Model322

GLM is a parametric regression technique that utilizes specialized link functions to relate the distri-323

bution of the response variable to a linear combination of the predictors. As opposed to the standard324

linear model, GLM excels in its ability to handle various distributions, such as Gaussian, Poisson, and325

Gamma, by selecting the appropriate link function. The model’s parameters are estimated through326

Maximum Likelihood Estimation (MLE), iteratively refined for optimal fit (Nelder & Wedderburn327

1972). This allows us to explore different model architectures and identify the most suitable model328

for our data. We perform the extensive search over 4158 formulae (see the left panel of Fig 5), com-329

posed of first and second-order variables. The cutoffs shown in the right panel Fig 5 include330

only the formulae with r above the 99.5th percentile (r > 0.587) and RMSE below the331

10th percentile (RMSE < 0.158). The formula that obtains the best correlation on the test set332

(see Sec 3.2.1) is selected as the final formula. In our implementation of GLM, we assign the formula333

below as the desired fitting function. This is based on our results from the extensive search (see Sec.334

3.2.1) with a Gaussian link function:335

log(1 + z) =(log(NH)2 + log(T90)
2 + log(Ta)

2 + log(NH)

+ PhotonIndex + log(T90) + log(Ta) + log(Fa))
2

+ log(PeakFlux) + log(Fa)
2 + PhotonIndex2 + log(PeakFlux)2.

(4)336

Note that this formula is same as the formula obtained for the outlier removal (Eq. 3).337
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3.3.2. The Generalized Additive Model338

In the semi-parametric GAM (Hastie & Tibshirani 1990), the redshift is related to the GRB vari-339

ables via the sum of either parametric or non-parametric functions including smooth functions or a340

combination of both. The advantage of GAM is that it incorporates smooth functions on specified341

features to relate nonlinear relationships between the features and the response variable. Each of the342

smooth functions is represented using a group of basis functions, also known as B-splines, which com-343

pose a piecewise polynomial function to relate the smoothed predictor to the response, constrained344

by a specified degree of freedom. In our implementation of GAM, however, a penalty term is applied345

to the B-splines to penalize high complexity, eliminating the need for manually specifying the degrees346

of freedom.347

Here, we emphasize the significance of utilizing first-order variables, as opposed to second-order348

variables. The use of second-order variables possesses the following disadvantages: firstly, the error349

related to the features would be squared and further propagated onto the redshift. In addition,350

there would be unnecessary complexity added to the model, especially considering that formulas351

with first-order variables with similar prediction quality exist. For these reasons, by prioritizing352

first-order variables, we enhance the precision of our predictions and subsequent error estimation.353

Thus, our extensive search for GAM is conducted on 141 formulae (see the right panel of Fig 5),354

composed of both smoothed and unsmoothed first-order variables. We employ cuts to include355

only the formulae with r above the 97th percentile (r > 0.644) and RMSE below the356

3rd percentile (RMSE < 0.138) for the final selection based on performance on the test357

set (see Sec 3.2.1). These cutoffs are different for GLM and GAM because we are358

conducting the two searches over different numbers of formulae: 4,158 for GLM and359

141 for GAM. Therefore, it is appropriate to apply different quantile cutoffs. We arrive360

at the below-mentioned formula for GAM:361

log (1 + z) =s(log (NH)) + s(log (T90)) + s(log (Ta))

+ log (Fa) + PhotonIndex + log (Peak Flux).
(5)362

Here s() denotes the smoothing function applied to the parameters in the GAM formula363

described above.364

3.3.3. SuperLearner365

The SuperLearner is an ensemble of ML models that has the advantage of combining several ML366

methods into a single model and leveraging the predictive power of each singular model. It is also367

able to use the same model with varying configurations and assess how each of these models performs.368

However, to perform this assessment, the models must be constructed in such a way as to minimize369

the anticipated risk, which quantifies the model accuracy, by reducing the RMSE.370

Outside of the algorithm, we employ a nested 10fCV 100 times (as mentioned in Sec 3.2.1) to gauge371

the accuracy of each individual ML model. By analyzing the ensemble’s behavior across different runs,372

we aim to identify the best-performing set of models and their corresponding weights. Subsequently,373

SuperLearner creates an optimal weighted combination of these models, providing an ensemble based374

on the performance on the test data. SuperLearner provides coefficients that indicate the weight (Ai)375

or significance of each individual learner within the collective ensemble. By default, these weights376

are non-negative and sum to 1. This approach has been demonstrated to achieve asymptotically the377

same accuracy as the most effective prediction algorithm in the ensemble.378
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Figure 5. The plot of the cross-validation results of RMSE and the r in the log(z + 1) of GLM (right)
and GAM (left) formulae. Each dot on either plot represents a formula performance within the 10fCV. The
red dots represent the formulae that were above the chosen RMSE and Correlation.

We survey 115 models individually, as described in Sec. 3.3, and we employ 25. Then, we use379

weights assigned by SuperLearner as a discriminator among the most predictive models, and we380

remove models weighted < 0.25 after having performed a 100 10fCV to ensure the stability of the381

most performative models.382

3.4. The relative importance383

To assess the contribution of each predictor, we use the relative importance of features which is an384

average of local linear approximation of prediction. For each observation, synthetic data is generated385

by adding Gaussian noise. Subsequently, we construct an approximate change in prediction through386

a linear model prediction, P = X × B where B are fit coefficients. The local relative importance of387

feature i is defined by Ri = |Bi|/P |Bi| for all sample points. In Fig. 6, the bars show the relative388

influence of the variables, where each bar contains the sum of the relative influence of the first-order389

and second-order variables. As we can see, the second most important variable is Ta, highlighting390

the importance of adding the plateau emission among the features. Indeed, all the variables related391

to the plateau emission survive the trimming performed by LASSO, and these variables, Ta, Peak392

Flux, and Fa, naturally recover the Dainotti correlation discussed in the Sec. 1.393

3.4.1. Error prediction and the Catastrophic Outlier Removal394

The GRBs in our sample have error measurements for log(Fa), log(Ta), log(T90), log(Peak Flux)395

and PhotonIndex. The uncertainties on log(NH) are difficult to gather since they are not present396

in the BAT catalog and for many GRBs such uncertainties are lacking. Thus, in the measurement397

errors we do not include the log(NH) uncertainties. In order to account for these observational398

uncertainties, we perform a Monte-Carlo Markov Chain (MCMC) approach, making the assumption399
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Figure 6. Plot of relative influence of each predictor including in each predictor also the second-order
variables.

that our uncertainties are Gaussian, because the uncertainties on the variables are independent400

between measurements of the same variable, and are random.401

The error bars on zpred are generated by MCMC simulations with Gaussian distributions centered402

around the central value of the observed variables and as standard deviation their measurement403

uncertainties. This procedure is repeated 100 times for each GRB in the 10fCV algorithm and allows404

us to obtain a redshift distribution whose minimum and maximum represent the error bars on zpred405

(see the errorbars in the Fig. 7).406

We obtain the 1σ and 2σ cones in Fig. 7 between zpred and zobs. The 1σ and 2σ are defined as:

1σ = 10σ
∗
z + (10σ

∗ − 1)

2σ = 102σ
∗
z + (102σ

∗ − 1)

where σ∗ is the standard deviation in the log(z + 1) scale.407

It is at this stage that we remove additional outliers deemed to be ’catastrophic’. These catastrophic408

outliers are defined in Jones & Singal (2020) as the GRBs which |∆z| > 2σ. In our case, 8 GRBs409
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are catastrophic outliers, and as shown in Fig. 7, they fall outside of the blue cone. Following410

this additional outlier removal procedure, our sample of 151 GRBs is reduced to 143 GRBs. It is411

important to note that we do not retrain our models following the catastrophic outlier removal.412

3.4.2. Bias Correction413

Following the removal of catastrophic outliers, we perform bias correction on our predictions. Bias is414

defined as the mean of the difference between predicted and observed values of the response variable.415

When training models on an imbalanced sample or a sample that has some level of discrimination416

against a set of random variable outcomes, the model’s predictions can have significant bias. With417

an imbalanced sample, the model becomes more skilled at predicting the redshift range with more418

observations. To correct for this bias, we use the Optimal Transport bias correction technique. This419

involves sorting in ascending order the predicted and observed values and fitting a linear model420

between them. The bias is corrected using the slope and intercept of this fit following this formula:421

Ypred = β0 + β1YSL

where Ypreds is the corrected predictions, YSL is the SuperLearner predictions, and β0 and β1 are the422

intercept and slope of the linear fits, respectively. Solving for the fitted Ypred values provides the423

bias-corrected redshift estimates. We apply this technique separately to four independent regions,424

namely, zobs < 2, 2 < zobs < 3.5, 3.5 < zobs < 5.0, and zobs > 5.0. This allows us to adapt the bias425

correction to different ranges of zobs, providing more accurate results.426

3.4.3. Predicting the redshift of the Generalization Set427

Given that our model has been fully validated using the 10fCV, we may now begin making predic-428

tions for our generalization set. However, before we use the generalization data, we must429

first perform data cleaning. This process is similar to the data cleaning of the training430

set. However, the main difference is that we now remove GRBs outside of the parameter431

space of our training set, in addition to the cuts performed to ensure a representative432

set of the parameters. This results in a total of 67 GRBs (29.8% decrease) being re-433

moved out of 221 GRBs. Thus, our generalization set consists of 154 GRBs. When434

predicting the generalization set, it is important to make sure that the GRBs are within435

the parameter space of the trained SuperLearner model. Otherwise, the model will ex-436

trapolate the redshift predictions for those GRBs, leading to lower confidence in their437

accuracy. With the best model obtained with the SuperLearner, we predict the redshift of these438

154 GRBs using the same predictors we have used in the training set. Since there is no observed439

redshift data for this dataset, we checked that our predicted redshifts come from the same parent440

population of the observed redshifts. We perform the Kolmogrov-Smirnov test (Karson 1968) and441

Anderson-Darling test (Stephens 1974) to verify if the two sets of data share the same underlying442

distribution.443

4. RESULTS444

In this section, we present the results of our analysis, including the performance of GAM, GLM,445

and the SuperLearner ensemble. We also discuss the implications of our findings and the application446

of these models in estimating the redshift in the generalization set.447
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Figure 7. The scatter plot between zobs and zpred. Upper panel: Predictions before removal of catastrophic
outliers and bias correction. Middle panel: Predictions after the removal of catastrophic outliers. Lower
panel: Predictions after the removal catastrophic outliers and application of bias correction.
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Figure 8. Histograms of our chosen metrics on testing sets. Both correlation and RMSE are computed in
the log(z + 1) scale. Left panel: correlation between predicted and observed redshift. Right panel: RMSE
of the predicted redshifts.

4.1. Performance Metrics and Comparison448

The benchmark for evaluating the quality of our results revolves around minimizing the RMSE449

within the SuperLearner algorithm. To further evaluate the efficacy of our results, we also utilize450

the following metrics in conjunction with SuperLearner RMSE: the Pearson correlation coefficient451

(r) between zobs and zpred, the normalized median absolute deviation (NMAD), and the bias defined452

as the mean of zpred − zobs. These metrics provide a reliable assessment of each model’s ability to453

predict redshift values accurately.454

4.2. SuperLearner Results455

The Superlearner identified GAM and GLM as the best predicting models. The ensemble generated456

with GAM (A1 = 0.649), exhibits the highest predictive capability, followed by GLM (A2 = 0.351).457

In this context, A1 and A2 denote coefficients indicating the optimal model and reflecting the weighted458

average of multiple models.459

The results obtained from SuperLearner are presented in Fig. 7. We obtain a r=0.719,460

RMSE=0.91, bias=0.11 and NMAD=1.29 between zobs and zpred including all GRBs. The461

catastrophic outlier percentage is 5.3%. Following the steps mentioned in Sec. 3.4.1 and Sec. 3.4.2,462

the results after the catastrophic outliers are removed, as shown in the middle panel of Fig. 7. Here,463

we obtain an improvement of the correlation which reach r=0.762, RMSE=0.83 and bias=0.15.464

The bias-corrected results are presented in the bottom panel of Fig. 7. Here, we see an improvement465

compared to the non-biased corrected results. The improvement is visible in all the metrics: r=0.932466

(29% increase), RMSE=0.46 (49% decrease) and NMAD=0.68 (47% decrease) between467

zobs and zpred. The catastrophic outlier percentage also drops from 5.3% to 4.9%. For high-z GRBs468

(zobs ≥ 3), r=0.85, RMSE=0.5, and bias=0.17.469

4.3. GAM and GLM Performance470

We begin by evaluating the predictive performance of the GAM and GLM models individually. We471

identified the most promising formulas for each model based on cross-validation metrics, specifically472

correlation, RMSE, and NMAD. We found that the selected formulas for both GAM and GLMmodels473
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demonstrated substantial correlation (0.65 and 0.66, respectively) in log(z + 1) scale and exhibited474

relatively low RMSE (0.99 and 1.20) and NMAD (1.36 and 1.34) values when performed on 100475

10fCV. The GAM and the GLM formulae that perform the best in terms of correlation are quoted476

in Eq. 5 and Eq. 3, respectively.477

Results of SuperLearner on the test sets during 10fCV are presented in Fig. 8, which shows the478

distribution of r (left panel) and the RMSE (right panel) of the 100 runs of the nested-fold 10fCV479

procedure. Our results show that the accuracy of the prediction is quite stable with a correlation480

coefficient between the zpred vs. zobs which peaks at 0.75 and an RMSE which peaks at 0.13 for the481

majority of partitions in the training sets and test sets. However, for a small number of partitions,482

we observe a small correlation coefficient and a higher RMSE. This is indeed natural due to the large483

heterogeneity of the data and the relatively small sample size.484

4.4. Predicting the Generalized Data Set485

The distributions of predicted redshift of the generalization set and zobs of the training set are486

presented in Fig. 10 with dashed and solid bars, respectively. The generalization set distribution487

has been obtained using the model after the optimal transport bias correction. We have checked the488

Anderson Darling for these two distributions, and the hypothesis that they are drawn by the same489

parent population is rejected. We further investigated the reason why the two distributions are not490

compatible with each other and we investigated the distribution of each variable that comes into491

play. We observed that the distributions of two variables (log(T90) and log(NH)) are also not drawn492

by the same parent population according to the Anderson Darling Test. Thus, possibly this is the493

cause of this discrepancy. In addition, in our initial sample we have removed the IS GRBs, but since494

the IS GRBs need to have a redshift to be defined, we do not have the possibility to highlight them.495

Another problem is that the classification of the SGRBs with extended emission for GRBs without496

redshift is not often reported in the literature, and thus, it is hard to classify GRBs appropriately in497

the generalization set. In order to further investigate this issue we added the IS GRBs to498

the sample and repeated the same procedure described above. We note that the best499

GAM and the best GLM are the same as the ones detailed in the previous sections. The500

number of IS GRBs is 11. This means that our training sample has been increased by501

6% compared to the total sample of the training and the test set. This increase of the502

training sample has not changed the formula for the prediction telling us indeed that503

our prediction is stable at the increase of the sample at least at the level of 6%.504

We have computed both the prediction errors and the error bars on the predictions following the505

approach detailed in Sec. 3.4.1. The contribution of these error bars are shown in the boxplot506

presented in Fig. 9. It is clear for some GRBs the error measurements are large, but overall we can507

assess that our method is reliable to infer the redshift for GRBs for which the redshift is unknown.508

We would also like to clarify that because of the size of the image, not all the names509

of the GRBs are present. We also cut GRBs that have a prediction error greater510

than the redshift predicted by our model. This results in GRB090518, GRB150817A,511

and GRB190604B being removed from the dataset, leaving us with 151 GRBs of the512

generalization set in Fig. 9.513514

4.4.1. Comparative Results515
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Figure 9. The box plot for each GRB is shown for the generalization set. The error bars are shown for
each prediction.

Figure 10. Histogram comparing the distributions of the training set zobs and the redshift predictions of
the generalization set.
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Prior to our investigation, several groups have used linear or non-linear relations between relevant516

GRB parameters. However, the redshift inferred with these methods has not yet led to accurate517

measurements (Reichart 2001; Yonetoku et al. 2004; Atteia 2005). Even when the inferred redshift518

uncertainty is small (5%), these measurements are provided only for a few cases (Guiriec et al. 2016).519

When the redshift is inferred from the correlation between the peak in the νFν spectrum, Epeak,520

and the energy emitted isotropically (Amati et al. 2002) during the prompt emission, r obtained521

between zobs and zpred is 0.67 (Atteia 2003). These zpred estimates, tested on 17 GRBs, are accurate522

only by a factor of 2 (Amati 2006). When the redshift is inferred from the bi-dimensional X-ray523

Dainotti correlation between Fa and Ta/(1 + z), only 28% of cases have small error bars, namely524

(zpred − zobs)/zobs < 1 (Dainotti et al. 2011). All these attempts are parametric.525

Compared to Ukwatta et al. (2016), parameters like T90, Photon Index, Fluence, and NH remain526

the same. Thus, it is the plateau variables, used here for the first time, that enhance our results.527

Ukwatta et al. (2016) employed Random Forest to estimate redshifts using prompt parameters,528

obtaining a correlation of 0.57 between zpred and zobs. Comparing our results we obtain a 38%529

improvement in correlation for the non-bias corrected results (top panel of Fig. 7) and530

63% improvement in correlation for the bias-corrected results (bottom panel of Fig. 7.531

Another problem, hardly explored in the literature (besides our study), is to account for measurement532

errors of GRB variables used to train ML models. Further, comparing our results with Racz et al.533

(2017), who achieved a r=0.67, we see a 22% increase in our correlation in the log10(z+1) scale when534

we apply the bias correction. In addition, our methodology is more complete than this work, since535

we use the LASSO feature selection, the M-estimator, the nested 100 10fCV, the Superlearner and536

the bias correction. Furthermore, we performed an extensive search by minimizing the RMSE and537

maximizing the correlations. All these steps have not been performed in the mentioned proceeding.538

5. SUMMARY, DISCUSSION AND CONCLUSION539

In this paper, we have developed a methodology to predict the redshift of GRBs from the Swift540

catalogue using prompt, plateau and afterglow parameters derived from the BAT+XRT observations.541

The steps we have followed are:542

1. Cleaning and imputing the missing variables with MICE;543

2. Removing the outliers using an M-estimator;544

3. Applying the LASSO method to select the most predictive feature to reduce the number of545

predictors given the small data sample;546

4. Using the SuperLearner to perform a nested 10fCV method on 25 different models to determine547

which models would be the most successful.548

5. We determine that our best ML models for the ensemble are GAM and GLM;549

6. Optimizing each model by performing an extensive search aimed to maximize the Pearson550

Correlation coefficient and minimize RMSE on a test data;551

7. Creating our final ensemble with Eq. 5 for GAM and Eq. 3 for the GLM.552

8. Performing a 4-way bias correction on our training set predictions.553
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9. Predicting the redshifts for the generalization set, including their prediction errors and the554

estimated observational uncertainties on the predicted redshifts. This is achieved using MCMC555

simulations based on the uncertainties on the variables (see Sec. 4.4).556

In comparison to other attempts to infer GRB redshift, our ensemble achieves an increase of 63%557

and 38% in the correlation between predicted and observed redshift reaching r = 0.93, compared558

to other works in which only random forest or gradient boosting alone were used. Ukwatta et al.559

(2016) found r = 0.57 with random forest, while Rácz et al. (2017) found r = 0.67 both with random560

forest and gradient boosting. The main difference, besides our enhanced prediction and the fact that561

we use a more complete methodology which has been detailed in Sec. 3, is the use of the plateau562

properties.563

In this work we highlight that the use of ML techniques for redshift prediction in GRBs offers564

several advantages over the commonly used parametric methods which employs only the use of565

bidimensional relations. Our individual GAM and GLM models exhibit strong predictive capabilities566

and demonstrate how to surpass the accuracy of existing approaches. In general, our study has567

shown that the use of parametric and semi-parametric methods brings an enhanced performance568

compared to the fully non-parametric approaches, like random forest, which are more prone to over-569

fitting compared to our methods. In addition, the advantage for the parametric and semi-parametric570

models are more interpretable than the non-parametric models. We have also shown that improved571

performance are actually happening with a reduced set of variables which contain first-order terms572

exclusively.573

Further, our study is a proof of concept for utilizing GRBs as standard candles in cosmology with574

the newly estimated redshifts from the generalization set. We have indeed increased the sample size575

of GRBs with known redshift by adding 154 GRBs (we have 423 GRBs with redshift so far) by 50%576

of the total sample of GRBs with redshift. With this new number we can use the Dainotti relation to577

serve as reliable cosmological tool. If we consider the increase of the estimates of GRBs with X-ray578

plateaus, then the increase is 94%.579

Looking towards the future, this is a preparatory work which will allows us to find values of ΩM580

with a similar precision as Conley et al. (2011). As discussed in Dainotti et al. (2022a), we would581

require 789 GRBs with X-ray plateaus to reach such a precision if we use GRBs which possess582

X-ray plateaus (see Table 9 in Dainotti et al. (2022b)). Since in the current analysis we obtain583

154 GRBs with unknown redshift and X-ray plateaus, we currently have a sample of 222+154=376584

GRBs with redshifts both known and inferred. Since we have a yearly rate of 15 GRBs with X-ray585

plateaus observed with redshift and 15 observed without redshift, our sample can be incremented from586

August 2019 until December 2023 by an additional 124 GRBs. This means that once we analyze the587

available GRBs with plateaus we will have more than 500 GRBs with known and inferred redshift.588

This will leave us only to wait for 789-500=289 GRBs to be observed, which with a rate of 30589

GRBs with X-ray plateaus per year, will be reached in roughly 10 years. However, if we apply590

the lightcurve reconstruction analysis Dainotti et al. (2023) we will have an higher precision on the591

plateau parameters (on average 37.5%) which will allow us to need less GRBs, namely 37.2% less of592

the initial total sample as detailed in Dainotti et al. (2022a). Therefore, from the total sample of593

789 we should remove 37.2% of it which is 293 GRBs. Thus, we would need 496, out of these we594

have already 489. This leaves us to wait only half a year to then reach the precision of Conley et al.595

(2011). Thus, with the aid of both ML and lightcurve reconstruction, we can reach a higher precision596
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in cosmology than the one obtained by Betoule et al. (2014). For this analysis, we would need 987597

GRBs, as detailed in Dainotti et al. (2022a), so 987-489=498 GRBs more that can be observed in598

roughly 18 years. However, if we consider the uncertainties of the parameters of the plateaus divided599

by half the number of GRBs needed will be almost half of this sample, so the precision of Betoule600

et al. (2014) can be reached only in 9 years.601

In conclusion, this work successfully predicts the redshifts of GRBs with X-ray plateau emission and602

introduces a pipeline of data processing techniques for obtaining reproducible and reliable results.603

Through preprocessing, imputation, model selection, and performance evaluation, we predict redshifts604

for 154 LGRBs.605

Our results are a proof-of-concept showing the potential of ML-based methods to enhance the field606

of astrophysics and cosmology. By expanding the dataset of GRBs with known redshifts we can607

successfully tackle population studies such as the more accurate estimate of the luminosity function608

and density rate evolution, enabling a deeper understanding of the high-z universe and its evolution.609

As further data becomes available and ML techniques continue to evolve, the accuracy and precision of610

redshift predictions for GRBs are likely to improve, offering exciting prospects for future cosmological611

research.612

6. APPENDIX613

Here we present the distributions of α, β, and γ before the cuts mentioned in Sec. 3.1.614

Based on the histograms, α, β, and γ values > 3 are clearly outliers, as they belong to the615

tail of their respective distributions. Because we wish to have the parameter space of616

the training data correspond as much as possible to the overall trend of the distributions617

for all the variables at play, thus, we impute them with MICE before performing the618

prediction analysis.619620

6.1. Results without removing outliers621

Here we present the results obtained when we do not eliminate the M-estimator out-622

liers. Namely, here the training set is larger by 2%, from 152 to 155. We applied the623

exact same methodology described previously. Below we present the 10fCV correlation624

plots for the SuperLearner. As can be observed in the Fig. 12, we see a 4% reduction625

in correlation, a 5.5% increase in RMSE, and a 0.73% increase in the MAD.626

Figure 11. Histogram distributions for α, β and γ, showing the distribution before the outlier removal.
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Figure 12. The scatter plot between zobs and zpred. Predictions from the SuperLearner after 100 10fCV
without using M-estimation outlier removal.

Thus, these results conclusively show that removing the outliers with M-estimator does627

indeed improve the performance of our ML models. However, given the small decrease628

in correlation and the small increase in RMSE we can observe a stable prediction in629

terms of these metrics.630
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