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We present an algorithm for sampling Clifford circuits on n d-level quantum systems. Our for-
malism combines the conjugation tableau framework typically found in stabilizer code theory with a
visualization that simplifies implementation and an O(n2) runtime. Additionally, we provide several
related results such as expressing the n-qudit Clifford generators in terms of elementary matrices
and an analysis of the algorithm’s overhead as a function of n and d.

I. INTRODUCTION

Qudits, d ≥ 2 level quantum systems, have emerged
as a powerful tool for storing and manipulating quan-
tum information [1–3]. Due to their higher-dimensional
Hilbert space, qudits can store exponentially more in-
formation than their binary counterparts, making them
increasingly important in applied quantum information
science. As hardware implementations of qudits become
more common, the need for appropriate benchmarking
procedures grows increasingly urgent.

Clifford circuits form a foundational class of quan-
tum circuits that classical computers can efficiently sim-
ulate. The Clifford group constitutes a 3-design, effec-
tively approximating Haar-random unitaries. This prop-
erty makes Clifford circuits essential to quantum com-
puting benchmarks, particularly in methods like Ran-
domized Benchmarking. However, characterization pro-
cedures for qudit systems remain vastly unexplored com-
pared qubit systems. In particular, qudit Randomized
Benchmarking has, to the best of our knowledge, only
been employed on single-qudit superconducting systems
[4–6].

The näıve approach to sampling Clifford operations
would be to generate all possible unitaries and then ran-
domly select an index within the range of the group size.
The challenge lies in sampling from a set that grows
exponentially with the number of qudits and polynomi-
ally with their dimension. For example, while there are
just 24 single-qubit Cliffords, two qubits support 11,520
Cliffords and three support 92,897,280. Similarly, while
single-qutrit systems have 480 Cliffords, two qutrits have
over four million.

State-of-the-art algorithms for randomly generating an
n-qubit Clifford unitary achieve O(n2) time complexity.
Notably, Van Den Berg [7] presents an elegant derivation
using conjugation tableaus, a formalism commonly found
in the stabilizer literature from which the Clifford group
gained its popularity. In this paper, we extend this to
n-qudits using the finite-dimensional stabilizer formalism
employed in [8] along with our own mathematical results.
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II. PRELIMINARIES

Throughout this work, our Hilbert space will be of
constant prime dimension d with orthonormal basis
{|q⟩}q∈Zd

where Zd is the field of integers modulo d.
We begin by introducing the generalized Pauli matrices
known as the clock and shift operators X and Z:

X =

d−1∑
q=0

|q⟩⟨q + 1| Z =

d−1∑
q=0

τ q
2

|q⟩⟨q| (1)

where addition is modulo d and τ = (−1)deiπ/d. The
order of τ for primes < 2 is d.

A. Weyl Operators

For two integers, p, q ∈ Zd, we define the single-qudit
Weyl operator as

Wp,q = τpqXpZq (2)

Beyond a single-qudit, we define vectors

p,q ∈ Zn
d (3)

and the generalized Weyl operator may be expressed as

Wp,q =Wp0,q0 ⊗ · · · ⊗Wpn−1,qn−1

= τp·q (Xp0Zq0 ⊗ · · · ⊗Xpn−1Zqn−1)
(4)

For compactness sake we concatenate p and q into a
single vector v = (p,q) ∈ Z2n

d such that Wp,q ≡ Wv.
One can show the following convenient properties:

1. WuWv = τ−[u,v]Wu+v

2. W †
v =W−v mod d

3. Wu and Wv commute iff [u,v] = 0 mod d

where [u,v] denotes the symplectic inner product:

[u,v] ≡ u⊤σv, where σ =

(
0n 1n
−1n 0n

)
. (5)

We also write [u,v]d = [u,v] (mod d). Notice that
[v,v] = 0 and [u,v] = −[v,u]. Later, we show a one-to-
one relationship between nonzero values of the symplectic
inner product and the commutator relation of the Weyl
operators (See Section IIC 2).
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B. Pauli Vectors

Generalized Pauli matrices are proportional to Weyl
operators by a factor of τ2. Therefore,

Pϕ,v = τ−2ϕWv (6)

for ϕ ∈ Zd and v ∈ Z2n
d as before. The Weyl operator

formalism allows us to speak of n-qudit Paulis in terms
of characteristic vectors v̄ ∈ Z2n+1

d called Pauli vectors.
We write the Pauli vector by embedding the parameters
into a single two-block vector:

v̄ = [ ϕ | v ]⊤ (7)

which is written as a column vector so we may perform
matrix multiplication from the left. We identify the gen-
erators of the Pauli group,

{
τ−2I,X,Z

}
, when v̄ is a

standard basis vector êj where j ∈ {0 · · · 2n}, and call
these the Pauli bases. All choices of Pauli vectors then
form the n-qudit Paulis Pd

n:

Pd
n =

{
Pv̄

∣∣ v̄ ∈ Z2n+1
d

}
(8)

C. The Clifford Group

The n-qudit Clifford group is defined as the normalizer
of the Pauli group up to a global phase:

Cd
n =

{
U ∈ U(dn)

∣∣ P ∈ Pd
n/{I}, U(P ) ∈ Pd

n

}
/U(1).

(9)
where parenthesis implies conjugation U(M) = UMU†.
The generators are the Fourier gate (a d > 2 extension
of the Hadamard gate) F , the phase gate S, the multi-
plication gate Ma for a in the multiplicative group of Zd,
and the two-qudit controlled-X gate, CX [8]:

F =
1√
d

d−1∑
p,q=0

τ2pq|p⟩⟨q| (10a)

S =

d−1∑
q=0

τ q
2

|q⟩⟨q| (10b)

Ma =

d−1∑
q=0

|aq⟩⟨q| (mod d) (10c)

CX =

d−1∑
qc=0

d−1∑
qt=0

|qc⟩⟨qc| ⊗ |qt + qc⟩⟨qt| (mod d) (10d)

1. Actions on the Pauli Group

Denote Xi (Zi) the Pauli which acts only X (Z) on
the qudit at index i ∈ Zn:

Xi = I⊗i ⊗X ⊗ I⊗n−1−i (11)

Zi = I⊗i ⊗ Z ⊗ I⊗n−1−i. (12)

Then, for some C ∈ Cd
n,

C(Xi) 7→ P, C(Zi) 7→ Q, P,Q ∈ Pd
n (13)

The operator C† which maps P and Q back to the basis
Paulis is also a member of Clifford group.
The first stage of the algorithm presented herein is a

sampling procedure that is conditional upon the commu-
tation relation between two randomly selected Paulis, P
and Q. Next we examine how the commutation relation
of these Paulis determines whether or not there exists a
Clifford such that

C†(P ) 7→ Xi , C†(Q) 7→ Zi. (14)

2. Commutation Relations

It is convenient that the commutation relations of Pauli
operators extend to Paulis under conjugation. Defining
the commutator as

[A,B] = ABA†B† (15)

we relate the commutation relation of distinct Pauli op-
erators to the symplectic inner product of their vectors
[9]. For Pj ∝Wvj

, Ph ∝Wvh
,

[Pj , Ph] = τ2[vj ,vh]dI. (16)

A pair of Pauli operators can fail to commute in d − 1
ways, each corresponding to a value of [vj ,vh]d ∈ Zd and
each with equal multiplicity. Defining the conjugation
adjoint as C(P )† = CP †C† = C(P †) it is easy to show
that Cliffords preserve the commutation relation of the
Pauli operators:

[C(Pj), C(Ph)] = [Pj , Ph]. (17)

For two pairs of distinct Paulis, there exists a Clifford
that maps one pair to the other only if the commutation
relation is preserved.

3. Symplectic Clifford Operators

We define the symplectic Clifford operators as those
which map basis Paulis to other Weyl operators:

σCd
n =

{
C ∈ Cd

n

∣∣ C(Wêj
) ∈ W ∀ 0 ≤ j ≤ 2n

}
⊆ Cd

n

(18)
All Paulis may be written as products of Weyl operators
with basis vector arguments, therefore a Clifford operator
is uniquely characterized by it’s transformation of these
basis vectors.

We define a symplectic transformation as an operator
S which preserves the symplectic inner product under
conjugation:

S : Z2n
d 7→ Z2n

d s.t. S⊤σS = σ (19)
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The group of such transformations is called Sp2n(Zd).
We invoke Theorem 5 from [8] which tells us that for any
C ∈ σCd

n, there exists S ∈ Sp2n(Zd) such that

C(Wv) =WSv ∀ v ∈ Z2n
d . (20)

Elements of the symplectic Clifford group simultane-
ously preserve the commutation relation of Pauli opera-
tors and the symplectic inner product of Pauli vectors.
Consider two two distinct Pauli vectors under symplec-
tic transformation associated with a symplectic Clifford
operator, C(Wêj

) =Wv and C(Wêh
) =Ww, then

[v,w] = ê⊤j S⊤σSêh = ê⊤j σêh = [êj , êh] (mod d) (21)

=

n∑
i=1

δj,i δh,n+i −
n∑

i=1

δj,n+i δh,i =


1 if h = j + n

−1 if h = j − n

0 otherwise

(22)

Moreover, this relation holds for the adjoint of such an
operator. Importantly, if [v,w] = ±1 there exists a Clif-
ford such that C(Wv) =Wêj and C(Ww) =Wêh

.

III. THE TABLEAU FORMALISM

For n qudits, a 2n× 2n+ 1 tableau is used to charac-
terize the action of an arbitrary Clifford C ∈ Cd

n. De-
note the tableau T (C), with elements Ti,j ∈ Zd for
i, j ∈ {0 · · ·n − 1}. Mathematically, the tableau rep-
resents a matrix with transposed Pauli vectors as its
columns:

T (C) =


ϕ0 v0

ϕ1 v1

...
...

ϕ2n−1 v2n−1


⊤

=
(
Φ⃗ W

)⊤
=

(
Φ⃗ X Z

)⊤
(23)

We transpose the matrix in the above expression to help
the reader transition to the visual representation pre-
sented momentarily. The Pauli vector of column j re-
veals the image CWêj

C† = Wvj
. Conversely, the result-

ing Weyl acting on qudit i is characterized by the phase
in the first row and the power of X (Z) found in row i
(i+ n), which lives in the so-called X (Z) block.

A. Symplectic Transformations

Each of the Clifford operators maps Weyls to Weyls
and therefore may be represented by symplectic opera-
tors S ∈ Sp2n(Zd) acting on qudits with indices 0 ≤
i, h ≤ n − 1. For clarity, we decompose the symplectic
operations given in Ref.[8] into products of elementary

matrices:

SS = Li+n,i(1) (24a)

SF = Ti,i+nDi+n(−1) (24b)

SMa
= Di(a)D

−1
i+n(a) (24c)

SCX = Li+n,h+n(−1)Lh,i(1) (24d)

where Lα,β(γ) is a transvection (or shear-mapping) which
adds γ times row β to row α; Tα,β is a permutation ma-
trix which swaps rows α and β; and Dα(γ) is the scalar
multiplication of row α by γ. Using this decomposition
and the respective properties of the elementary matrices,
it is easy to derive valuable operations using the Clifford
generators, such as the SWAP gate:

SWAPi,h = F 2
i CXi,hCX

†
h,iCXi,h : |ψi⟩|ψh⟩ 7→ |ψh⟩|ψi⟩

(25)
The action of a Clifford operator on a tableau is ex-

pressed by left multiplication with the respective sym-
plectic matrix:

SUT (C) =
(
Φ⃗ UWU†

)⊤
(26)

From our decomposition of the symplectic operators into
elementary matrices, we can derive the following proper-
ties (see Fig. 1):

1. Phase Gate: When acting on qudit i, this gate
adds the X block Pauli vector entries to the corre-
sponding Z block.

2. Fourier Gate: When acting on qudit i, this gate
multiplies row i + n in the Z block by −1, then
swaps it with row i of the X block.

3. Multiplicative Gate: This gate scales row i of
the X block by its parameter a and row i + n by
a−1.

4. Controlled-X Gate: With control qudit i and
target qudit h, this gate adds the control column
of the X block to the target column of the X block,
while subtracting the target column of the Z block
from the control column of the Z block.

B. Visual Representation

Next, we turn to a visual representation of the tableau
which provides an intuitive way to understand the algo-
rithm proposed in this paper. Beginning with the def-
inition in Eq. 23, we ignore the transpose then per-
form a reindexing of the rows such that for qudit i,
adjacent rows correspond to the Pauli vectors associ-
ated with the images C(Wêi

) ≡ C(Xi) = Wvx
and

C(Wêi+n
) ≡ C(Zi) = Wvz

, respectively (see Fig. 2a).
The exact index map interleaves the rows and is given
by

i 7→ ĩ = 2i (i < n)

i 7→ ĩ = 2(i− n) + 1 (i ≥ n).
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FIG. 1: In the visual representation of the tableau, the symplectic matrix corresponding to each Clifford generator
applies a unique transformation to the tableau columns.

IV. ALGORITHM FOR GENERATING n-QUDIT
CLIFFORD CIRCUITS

Following the tableau formalism presented in Ref [7],
we present an algorithm that samples random elements
of Cd

n. The algorithm initializes ĩ = 0 and iterates while
ĩ < n:

1. Randomly sample two Pauli vectors vx and vz

∈ {0}2ĩ ⊕ Z2(n−ĩ)
d that satisfy the commutation

relation of the basis operators X and Z. This is
required by the preservation of commutation rela-
tions under the Clifford action (see Section IVA).

2. Algorithmically sweep the populated tableau to ar-
rive at the Pauli basis vectors êĩ, êĩ+1, therefore

finding the inverse map C† such that

C†Wvx
C 7→ Xi (27a)

C†Wvz
C 7→ Zi. (27b)

3. Increment ĩ by 1: ĩ→ ĩ+1. The algorithm repeats
steps 1 and 2 for each qudit.

A. Sampling Paulis

Conjugation under symplectic Clifford operators pre-
serves the symplectic inner product and thus commu-
tation relations among Weyl operators. Therefore, if
C ∈ σCd

n, then by Eq.22 the rows of T (C) are orthog-
onal with respect to the symplectic inner product, except
for rows h and h±n, which have symplectic inner product
of ±1. Before reindexing, these rows correspond to the
images of the shift and clock operators under C. After
reindexing, these become adjacent rows h and h+ 1.

The sampling procedure is as follows:

1. Sample two phase values ϕĩ, ϕĩ+1 ∈ Zd. As these do
not affect commutation relations, this can be done
independently.

2. Initialize a random Pauli vector vx ∈ Z2n
d . If it is

the identity, it will commute with the second Pauli
vector; therefore, we discard it and sample again.

3. Initialize a second random Pauli vector vz ∈ Z2n
d

such that it does not commute with vx, i.e.,
[vx,vz] = 1.

As shown in [7], the probability of sampling two anti-
commuting Pauli vectors for qubits is greater than 3/8.
For n qudits, we sample 2n integers from Zd, yielding d

2n

possible Pauli vectors. The first Pauli, P1, must not be
the identity, leaving d2n − 1 valid Paulis. The number of
Paulis which fail to commute with P1 in the same man-
ner as the shift and clock operators is d2n/d. Therefore
the probability of sampling a valuable Pauli pair is

(d2n − 1)d2n−1

(d2n)2
=

1

d

(
1− 1

d2n

)
≥ 1

d
− 1

d3
. (28)

After completing this stage, we arrive at the populated
tableau in Figure 2a.

B. Sweeping the Tableau

At the heart of the algorithm is a six-step sweeping
procedure that acts on pairs of rows r1 ≡ 2̃i and r2 ≡
2̃i+ 1.

1. Clear Z entries of row r1 (Fig. 2b):

(a) For every qudit of row r1 at index > ĩ, apply
a Fourier gate if the entry in the X block is 0.
Otherwise, if the corresponding entry of the Z
block is nonzero, apply a phase gate.

2. Reduce the X entries of row r1 to a basis vector
ê2ĩ, i.e., zeros everywhere except for a 1 at entry
T2ĩ,2ĩ (Fig 2c):

(a) Create a list of indices J corresponding to the
nonzero entries in the X block of r1.

(b) While |J | > 1 (i.e. J is not a singleton) apply
CX gates on pairs of qudits corresponding to
the entries in odd indices (≤ |J |) of J .

(c) When an X block entry of target qudit cycles
to 0, remove its index from J and repeat from
step 2a.
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(a) (b)

(c) (d) (e)

(f) (g)

FIG. 2: The first two rows of a tableau for two qudits capture the signature of a Clifford operator C acting on the
first qudit — specifically, the images C(X0) and C(Z0). Gray entries have values in Zd, while blue and gold entries

have arbitrary nonzero values less than d.

3. If the nonzero entry is not in column 2̃i, i.e., if
J [0] ̸= 2̃i, perform a SWAP gate between column
J [0] and column 2̃i.

4. If the second row is already in the Z2ĩ-configuration

(i.e. zeros except a 1 at entry 2̃i in the Z block),
skip this step. Otherwise, perform a Fourier gate
on qudit 2̃i. Repeat steps 1 and 2 as before, but
on the second row. Then perform an additional
Fourier gate (see Fig. 2d, 2e, and 2f).

5. The first entry of r1 and the nth entry of r2 are now
equal. If both equal 1 (which is required to satisfy
the commutation relation of the basis operators),
skip this step. Otherwise, apply a multiplicative
gate with a = r2[n], the first entry of the 2̃i+1 row
of the Z block (see Fig. 2g).

6. Clear the phase vector by repeatedly applying clock
and shift operators. While ϕr1 ̸= 0 or ϕr2 ̸= 0:

(a) If both are nonzero, apply a Y ∝ XZ gate
to qudit 2̃i. This gate does not commute with
either row, thereby decrementing the phase by
1.

(b) If only ϕr1 is nonzero, apply a Z gate.

(c) If only ϕr2 is nonzero, apply a X gate.

C. Efficacy

No Clifford operator maps two distinct Weyl operators
to the same Weyl operator. This implies that the sample
space of valid Pauli vectors is the same size as the set of
Clifford operators acting on them. From Eq. 28, there are
d2n−1(d2n − 1) valid Pauli vector pairs, ignoring phases.
As a function of a subset ofm < n qudits, the multiplicity
is given by

Ω(m, d) = d2m−1(d2m − 1)

. Consideration m to range from 0 to n−1, as in the iter-
ative process of the algorithm, we maximize the Clifford
sample space:

Ω(n, d) =

n−1∏
i=0

Ω(n− i, d) = |Sp2n(Zd)|. (29)

We independently sample phases, which account for the
total cardinality of the generalized Pauli group |Pd

n| =
d2n. Thus, the cardinality of the accessible Clifford space
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is:

|Cd
n| = |Pd

n||Sp2n(Zd)| = d2ndn
2
n−1∏
i=1

(d2i − 1). (30)

This expression agrees with well-known results in the field
such as Cd

n/Pd
n
∼= Sp2n(Zd). In the case of n-qubits, this

reduces to the known form C2
n = 2n

2+2n
∏n−1

i=1 (4
i−1) [10]

[11].

V. DISCUSSION

This paper presents an algorithm for sampling n-
qudit Clifford circuits, which has a runtime complexity
of O(n2). By extending the conjugation tableau for-
malism to d-dimensional systems, we have provided a
method that is both theoretically rigorous and practi-
cally implementable, aided by a visual representation.
The algorithm achieves uniform sampling across the en-
tire Clifford group as confirmed by our cardinality anal-
ysis, which is consisted with established results in the
literature.

The efficient sampling technique has immediate appli-
cations in quantum characterization protocols for qudit
systems, particularly in extending Randomized Bench-

marking beyond qubits and single-qutrit implementa-
tions. Future work could focus on optimizing the al-
gorithm for specific values of d, developing variants for
common qudit dimensions, or exploring connections with
fault-tolerant protocols for higher-dimensional systems.
As qudit-based quantum computing hardware continues
to develop, this sampling algorithm provides an accessi-
ble tool for comparing emerging quantum processors.

CODE IMPLEMENTATION

The algorithm presented in this paper has been im-
plemented and is publicly available. The code can
be accessed through the following GitHub repository:
https://github.com/qnl/qnlib. This repository contains
the full implementation of the algorithm, along with doc-
umentation and examples to facilitate its use in quantum
circuit sampling and related tasks.
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