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Introduction
In our experiment, we are interested in having full control of the interaction between neighbor-
ing qutrits via a tunable resonator. Tuning of the resonator is controlled by biasing a flux line,
which has mutual inductance with the tunable resonator’s SQUID. The interaction between
these components is known to provide a decoherence channel. In this document, we investigate
several decoherence effects. Particularly, we are concerned with the decoherence and dephasing
times that result from tuning our coupler with the flux line.

Decoherence can by described as noise in the Hamiltonian’s external parameters, λi. Generally,
these are fluctuations in charge, magnetic flux, and critical current. Although other contribu-
tions to noise are thought to be present, the work surrounding these sources of decoherence is
less important for our experiment so for example, we will not consider dielectrics losses here.

Generally, the Hamiltonian of a qutrit is of the form

Ĥ = h⃗(λi)⃗̂σ (1)

where σ⃗ contains the three spin-1 Pauli matrices, and h⃗ contains their respective coefficients.
The noise in our parameters may be expressed as

λi = λo
i + δλi (2)

where λo
i is the dc component of the parameter, and δλi is the fluctuating noise term. The noise

leads to two decoherence effects:

i) For sufficiently low frequencies, fluctuations in our parameters may be treated with the adi-
abatic approximation, leading to random shifts in the transition frequency of the qutrit. This
gives a pure dephasing on the time scale T2.

ii) Higher frequency fluctuations break the adiabatic approximation and induce transitions be-
tween qutrit states. This is energy relaxation on the time scale T1.

Estimates for Qutrit Relaxation Time (T1)
The 2007 paper by Koch et al. ( https://doi.org/10.1103/PhysRevA.76.042319) covers a cohesive
summary of the transmon decoherence channels which allow estimates for T1 times. However,
these channels are for TLSs, not qutrit systems like those we are dealing with. As such, we
extend these concepts to three-level systems in this section.

Spontaneous Emission
We can get a decent approximating for the relaxation time due to the spontaneous emission
of photons from our system by treating it as a Hertzian dipole with wavevector k = ωr

c
and

dipole moment p. The total power radiated by such a system (see Chapter 9.2 of Classical
Electrodynamics by Jackson) is

P =
ck4

3
|p|2 = 1

4πε0

p2ω4
r

3c3
. (3)

In our circuit, power is exerted by cooper pairs tuning through a barrier of length L, which is
analogous to a center-fed linear antenna with nodes of length L, so for p = 2eL

T rad
1 |01 ≡

ℏω01

P
=

12πε0ℏc3

d2ω3
01

(4)
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and

T rad
1 |12 ≡

ℏω12

P
=

12πε0ℏc3

d2ω3
12

(5)

Purcell Effect
A system in a resonating cavity has an altered spontaneous emission rate, this is known as the
Purcell Effect. For the transmon coupled to a transmission line resonator, the same effect will
occur and each transmon level will experience a different change to its spontaneous relaxation
rate.
We may apply Fermi’s Golden Rule to the Hamiltonian for the interaction of the resonator with
its bath to estimate the relaxation rate. Take the bath Hamiltonian

HB(κ) = ℏ
∑
k

λk[b̂
†
kα̂ + α̂†b̂k] (6)

where b̂k and b̂†k are the bath operators for mode k. λk determines the coupling strength per
mode. Now take the generalized Jayes-Cumming Hamiltonian, denoted HS for Hamiltonian of
the system,

HS = ℏ
∑
j

ωj|j⟩⟨j|+ ℏωrα̂
†α̂ + ℏ

∑
i,j

gi,j|i⟩⟨j|(α̂ + α̂†) (7)

where

ℏgij = 2βeV o
rms⟨i|n̂|j⟩ (8)

gives the coupling energies between states. The various coefficients are defined as

Variable Definition

Transmon Characteristic Frequency (ωr) 1/LrCr

Ratio of gate to total capacitance (β) Cg/CΣ

Root-mean-squared voltage of the local oscillator (V o
rms)

√
ℏωr/2Cr

Quantum Number Operator (n̂) α̂†α̂

After approximating non-adjacent coupling terms to 0 (in the transmon regime)

HS ≈ ℏ
∑
j

ωj|j⟩⟨j|+ ℏωrα̂
†α̂ + [ℏ

∑
i

gi,i+1|i⟩⟨i+ 1|α̂† + h.c]. (9)

If we apply the interaction analysis covered in Chapter 3.3 of The Theory of Open Quantum
Systems by H.-P. Breuer and F. Petruccione, we arrive at a relaxation rate defined as

Γf,i(ω) ≡
∫ ∞

0

dseiωs⟨B†
α(t)Bβ(t− s)⟩ = 1

2
γ(ω)f,i + iSf,i(ω) (10)

where

⟨B†
α(t)Bβ(t− s)⟩ ≡ trB{B†

α(t)Bβ(t− s)ρβ} (11)

are the reservoir correlation functions and

Bα(t) = eiHBtBαe
−iHBt (12)

are the interaction picture operators. Notice Γ is a complex tensor. The real component repre-
sents the physical dissipator, whereas the imaginary part gives the so-called lamb-shift or renor-
malization of the unperturbed energy levels induced by the system-reservoir coupling. Solving
for the disspator terms in our system (as done by Koch et al) gives
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γ
(f,i)
k =

2π

ℏ
p(ωk)|⟨1k, f |ℏ

∑
k′

λk′ [b̂
†
k′α̂ + α̂†b̂k′ ]|0, i⟩|2 (13)

This value is the rate that the transmon emits 1 photon with energy ℏωk = Ei−Ef to the bath.
The Reservoir’s density of states at this energy is p(ωk). If we define

κ = 2πℏp(ωk)|λk|2 (14)

then

γ(f,i)
κ = κ|⟨f |α̂|i⟩|2 (15)

In the absence of photons in the cavity the higher transmon levels will see a Purcell-induced
relaxation rate

γ(i,i+1)
κ = κ

g2i,i+1

(ωi,i+1 − ωr)2
. (16)

This assumption is valid because the base temperature of about 16mK is close enough to 0
photon energy.

Capacitive (Drive) Coupling
Charge-coupling to a drive line introduces voltage noise into the system. We approximate the
Johnson-Nyquist noise PSD as 1

S(ω)V = ℏωRe[Z(ω)](1 + coth
ℏω
kBT

). (17)

The relaxation rate resulting from such noise is given by

Γi→j
1 =

1

ℏ
|⟨i|A|j⟩|2S(ω)V (18)

where A = Vgn̂ for Vg =
Ec

2
ng. The charge offset, ng =

CcVc

2e
where Cc is the capacitance to the

drive line, and Vc is the root mean square voltage noise from the PSD above:

Vc =

∫ ∞

0

S(ω)vdω (19)

Flux Coupling
Most important to our experiment is the relaxation due to the transmon coupler interacting
with the flux line bias during control. We recognize two causes for this relaxation. These are, (i)
intentional coupling between the SQUID loop and flux bias through mutual inductance, denoted
M hereafter, which allows for EJ tuning, and (ii) the entire transmon couples to the flux bias
via M ′ (see Figure 1)

I) Let the total flux thorugh the SQUID be the sum of the environmental flux from the control
line and the noise flux from other external fields, Φ = Φe + Φn, and assume Φe >> Φn. Taylor
expansion of the Josephson Hamiltonian can be represented as

HJ 7→ HJ + ΦnÂ (20)

where

Â =
∂HJ

∂Φ
|Φe = EJΣ

π

Φo

[sin(πΦe/Φo) cos(φ̂)− d cos(πΦe/Φo) sin(φ̂)] (21)

1As a side note, the most accurate form of this PSD is S(ω)V = ℏωRe[Z(ω)](1 + coth ℏω
kBT )

2
eℏω/kBT but the

exponent is O(1) if ℏω ≈ kBT
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Figure 1. The transmon (left) experiences mutual inductances M , and M ′ with
the flux line (right). (Image taken from Koch et al (2007))

for total Josephson Energy EJΣ = EJ1 + EJ2 and Junction asymmetry d = (EJ1 − EJ2)/EJΣ.

The term ΦnÂ in Eq. (12) captures the sensitivity of the Josephson Hamiltonian to flux, scaled
by the perturbative flux noise.

Using perturbation theory, we may relate the relaxation rate to the power spectrum as

Γf,i
1 = 1/T f,i

1 =
1

ℏ2
|⟨f |Â|i⟩|2SΦn(ωf,i) (22)

where

SΦn(ωf,i) =

∫ +∞

−∞
dτeiωf,iτ ⟨Φn(τ)Φn(0)⟩ = M2SIn(ωf,i). (23)

is the mutual inductance relation that comes from the correlation function for the bath operator
(see Appendix A). The flux bias line could be at a much higher effective noise temperature so
we need to estimate the Johnson-Nyquist noise. The fluctuations in the voltage can be related
to the total parallel impedance Zt(ω) and the inductance through the fluctuation-dissipation
theorem2:

SIn(ω) =
1

ω2L2
I2pSVn =

ℏω
ω2L2

Re[Zt(ω)]

[
coth

ℏω
2kBT

+ 1

]
. (24)

where T is the temperature of the bath and Ip =
√

C
L

= 1
ωL

is the persistent current of the

superconductor which depends on the control circuit inductance. At temperatures kBT << ℏωq

and impedance of the flux line inductor ZL << 50Ω, the current quantum noise is approximated
as

SIn ≈ 2Θ(ωf,i)ℏωf,i/R, (25)

where Θ(ω) is the step function. We may represent the SQUID as an inductor in parallel with
the resistance quantum R ≈ 50Ω, such that

Re[Zt(ω)] = Re[(
1

R
+

1

iXL

)−1] = Re[
iRXL

R + iXL

] =
RX2

L

R2 +X2
L

, (26)

where XL = ωLt for total inductance of the SQUID junctions Lt = ( 1
L1

+ 1
L2
)−1.

In conclusion, we calculate the relaxation rates for each of the excited states:

2See p370-375 of M. H. Devoret’s Quantum Fluctuations in Electrical Circuits, and Section 4 of Irreversibility
and Generalized Noise.

https://boulderschool.yale.edu/sites/default/files/files/devoret_quantum_fluct_les_houches.pdf
https://journals.aps.org/pr/pdf/10.1103/PhysRev.83.34
https://journals.aps.org/pr/pdf/10.1103/PhysRev.83.34
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Γ01
1 = Γ0→1

1 + Γ1→0
1 =

1

ℏ2
|⟨0|Â|1⟩|2(SΦn(w01) + SΦn(−w01)) = (T 01

1 )−1 (27a)

Γ12
1 = Γ1→2

1 + Γ2→1
1 =

1

ℏ2
|⟨1|Â|2⟩|2(SΦn(w12) + SΦn(−w12)) = (T 12

1 )−1 (27b)

We can maximize T1 through Â, by applying a integer number of flux quanta to the environment.
Minimizing T1 would require a half-integer of flux quanta as Â → 0 in the case of a symmetric
SQUID (d = 0).

II) To address the entire transmon decoherence, we may model it by an LC oscillator with

inductance L ≈ ℏ2
4e2EJ

, capacitance C ≈ e2

2EC
. This model has time dependent charge Q(t) =

Qo cos(ωt), with ω = 1/
√
LC. Assuming energy stored in the circuit E ℏω, Qo =

√
2Cℏω, we

have current I(t) = −Io sin(ωt) for Io = ω
√
2Cℏω.

The mutual inductance and oscillating current induces a voltage in the flux bias circuit as

Vind(t) = Vo sin(ωt) (28)

where Vo = M ′ω2
√
2Cℏω.

Environmental impedance on the order of 50Ω dissipates the average power as

P =
V 2
o

2R
. (29)

Decoherence time is then approximated by

T1 ≈
ℏω
P

=
R

M ′2ω4C
=

RC

η2
(30)

for η = M ′/L is the effective coupling strength in units of Josephson inductance.

Estimates for Qutrit Dephasing Time (T2)
Dephasing of a quantum state can be easily understood as fluctuations in the systems energy
levels, onset by noise in the Hamiltonain’s external parameters. For a transmon, the primary
contributions so such fluctuations are noise in charge, critical current, and magnetic flux.

Charge Noise
The transmon’s sensitivity to charge noise can be expressed in terms of the differential charge
dispersion ∂Eij/∂ng, where i and j specify energy levels for which we are interested in their
difference Ej − Ei. In a qutrit like ours, we care about ∂E01/∂ng and ∂E12/∂ng which give
∂E02/∂ng by linearity. Tranmon experiments have confirmed their charge insensitivity, imply-
ing that large fluctuations of the offset charge parameter typically occur at times well exceeding
the acquisition time of a sing experiment. Simultaneously, small fluctuations contribute to de-
phasing so both need to be considered.

Dephasing due to parameter fluctuations may be expressed as decay of the off diagonal density
matrix. Assuming a Gaussian distribution of noise, smaller fluctuations exist on a 1/f spectrum,
so Eq (58) captures the realistic behavior of the density matrix (see Appendix B). Approximating
the ln term to a constant, the decay time of the exponential is

T i→j
2 ≈ ℏ

Ang

∣∣∣∣∂Eij

∂ng

∣∣∣∣−1

≈ ℏ
Angπ|ϵj|

(31)

where we have used
δEij

∂ng

≈ πϵj sin(2πng) (32)

for the charge dispersion relation of the jth energy level
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ϵj ≈ (−1)jEC
24j+5

j!

√
2

π

(
EJ

2EC

) j
2
+ 3

4

e−
√

8EJ/EC . (33)

For slow charge fluctuations over longer time scales, we cannot treat the Hamiltonian with
perturbation, rather we write the Hamiltonian with an oscillating term dependent of the charge
offset. The first three energy levels are described by the two Hamiltonians

Ĥ ≈
[
Ω +

ε

2
cos(2πng + 2πδng(t))

]
· Sz (34)

where

Ω =

ω01 0 0
0 0 0
0 0 ω12

 , ε =

ϵ1 0 0
0 0 0
0 0 ϵ2

 and Sz = ℏ

1 0 0
0 0 0
0 0 −1

 (35)

for unperturbed energy spectrum of our qutrit eigenbasis ℏωif ≡ ⟨f |H⃗0(λ0)|f⟩ − ⟨i|H⃗0(λ0)|i⟩.
This gives the decay laws

ρ01(t) ≈ eiω01t⟨exp
[
−i

ϵ1
2ℏ

∫ t

0

dt′ cos[2π(ng + δng(t))]

]
⟩ (36a)

ρ12(t) ≈ eiω12t⟨exp
[
−i

ϵ2
2ℏ

∫ t

0

dt′ cos[2π(ng + δng(t))]

]
⟩. (36b)

In precaution of a worst-case scenario, let’s assume the effective charge noise fluctuates between
[0,1] with a uniform probability distribution. This gives

ρij ≈ eiωijt

∫ 1

0

dng exp[−iϵjt cos(2πng)/2ℏ] = eiωijtJ0(|ϵj|t/2ℏ) (37)

where J0 is the envelope of the Bessel function. J0(z) asymptotically falls off as
√

2/πz, so using
the ratio 1/e to measure the dephasing time, e.g the decay of the envelope, is

T i→j
2 ≈ 4ℏ

e2π|ϵj|
(38)

Flux Noise
Noise in the applied flux leads to fluctuations in the Josephson energy EJ . This noise is partic-
ularly of interest to us because flux is used to tune the coupler transmon transition frequency.
For simplicity, we may estimate the eigenenergies with

Em ≈ −EJ +
√
8EcEJ(m+ 1/2)− Ec

12
(6m2 + 6m+ 3) (39)

which gives

E01 =
√

8EcEJ − Ec and E12 =
√
8EcEJ − 2Ec. (40)

In general, multiple junctions can contribute to the Josephson energy, so we have to generalize
it in terms of the applied flux,

EJ = EJΣ cos(
πΦ

Φ0

)

√
1 + d2 tan(

πΦ

Φ0

) (41)

In the symmetric junction case d = 0, for small flux noise about an integer multiple of Φ0, the
first derivative goes to 0, implies the dephasing is dominated by the second order, or
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T i→j
2 ≈ ℏ

AΦ

∣∣∣∣∂Eij

∂Φ

∣∣∣∣−1

=
ℏΦ0

AΦπ

(
2ECEJΣ

∣∣∣∣sin πΦ

Φ0

tan
πΦ

Φ0

∣∣∣∣)−1/2

(42)

in the transmon regime. Clearly, the device must be operated away from half-integer numbers
of flux quantum or T2 goes to 0. On the other hand, at integer number of flux quanta T2 goes to
infinity. This is called the flux sweet spot, where second-order contributions dominate. These
terms are neglected in our treatment of noise in Appendix B but are significant as they describe
the real behavior that we don’t get with just the first order approximation in the flux case.
These second terms, approximated about Φ = nΦ0 for integer n

T i→j
2 ≈

∣∣∣∣π2A2
Φ

ℏ
∂2Eij

∂Φ2

∣∣∣∣−1

Φ=0

=
ℏΦ2

0

A2
Φπ

4
√
2EJΣEC

(43)

When d ̸= 0, as in all realistic SQUIDs, we have

T2 ≈
ℏΦ2

0

A2
Φπ

4
√
2EJΣEC |d2 − 1|

. (44)

Critical Current Noise
Noise of the critical current is a secondary contribution to fluctuations of the Josephson energy.
This decoherence source is believed to be due to generation and recombination of charges to
ions trapped in the tunneling junction dielectric. From the Josephson energy-current relation,
EJ = Icℏ/2e, the corresponding dephasing time for the transmon is given by

T i→j
2 ≈ ℏ

AIc

∣∣∣∣∂Eij

∂Ic

∣∣∣∣−1

=
ℏ
AIc

∣∣∣∣ ∂

∂Ic

√
8EcEJ |EJ=Icℏ/2e

∣∣∣∣−1

=
ℏ
AIc

∣∣∣√Ecℏ/eIc
∣∣∣−1

=
2ℏ

ÃIcEij

(45)

where Ã = AIc/Ic gives the fluctuation amplitude.
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Appendix A: Relaxation due to Noise Perturbation
We are interested with the relaxation time between the ground, first and second excited states.
Extending the approach of Schoelkopf et al (SPIE 2003) to a 3n Hilbert space, we may use first-
order time-dependent perturbation theory to relate the relaxation rate to the power spectrum.
First, we map the three energy levels of the qutrit to those of a fictitious spin-1 particle, i.e. the
Cooper-pair box is restricted to the manifold {|0⟩, |1⟩, |2⟩}. Spin +1 represents the ground state
|g⟩, spin 0 the first excited state |e1⟩, and spin -1 the second excited state |e2⟩. The Hamiltonian
is

H0 = −ℏ(ω01|g⟩⟨g| − ω12|e2⟩⟨e2|) = −ΩSz (46)

With this analogy, we seek to calculate the rate of ’spin-flip’ transitions induced by external noise
sources. Suppose a general time dependent perturbation by an arbitrary Hermitian operator,
V̂ (t) of the form

V̂ (t) = f(t)

 0 V01 0
V10 0 V12

0 V21 0

 = f(t)[V10|e1⟩⟨g|+ V01|g⟩⟨e1|+ V21|e2⟩⟨e1|+ V12|e1⟩⟨e2|]. (47)

Notice that this perturbation does not allow for direct transitions between |e2⟩ and |g⟩, rather
these require so-called 2-photon interactions. For small enough coupling terms, we may assume
perturbations of first order. Let the state of the system be

|Ψ(t)⟩ =

αg(t)
αe1(t)
αe2(t)

 . (48)

Using perturbation theory,

αf,i = − i

ℏ

∫ t

0

dτeiωf,iτ ⟨f |V̂ |i⟩f(τ) +O(A2). (49)

We are interested decay time of our qutrit, so suppose we begin in the first excited state. Then
the amplitude to find the particle in the ground state is

αg,e1 = −iV01

ℏ

∫ t

0

dτeiω01τf(τ). (50)

Similarly for the second excited state to the first excited state

αe1,e2 = −iV12

ℏ

∫ t

0

dτeiω12τf(τ). (51)

Because we are restricted to 2-photon interactions, the direct amplitude from the second excited
state to the ground state is ⟨0|V̂ (τ)|2⟩ = 0. To get the probability of such an interaction we can
take the probability p02 = p01p12. We compute the probability of these transitions as

pf,i(t) ≡ |αf,i|2 =
1

ℏ2

∫ t

0

∫ t

0

dτ1dτ2e
−iωf,i(τ1−τ2)|⟨f |V̂ |i⟩|2f(τ1)f(τ2) +O(A3). (52)

Although we are only concerned with the average time evolution of the system, given by

pf,i(t) =
1

ℏ2

∫ t

0

∫ t

0

dτ1dτ2e
−iωf,i(τ1−τ2)|⟨f |V̂ |i⟩|2⟨f(τ1)f(τ2)⟩+O(A3). (53)

After a change of basis, τ = τ1 − τ2 and T = (τ1 + τ2)/2,

p,f (t) =
1

ℏ2

∫ t

0

dT

∫ B(t)

−B(t)

dτe−iωf,i(τ)|⟨f |V̂ |i⟩|2⟨f(T + τ/2)f(T − τ/2)⟩+O(A3). (54)
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where

B(T ) = T if T < t/2

= t− T if T > t/2.

If the noise correlation function is time translation invariant and has a small, finite autocorre-
lation time τf , then for t >> τf the bound B(T ) → ∞, giving

pf,i(t) =
1

ℏ2
|⟨f |V̂ |i⟩|2

∫ t

0

dT

∫ ∞

−∞
dτe−iωf,iτ ⟨f(τ)f(0)⟩. (55)

We define the noise spectral density as the Fourier transform of the correlation function

Sf (ω) =

∫ +∞

−∞
dτeiωτ ⟨f(τ)f(0)⟩, (56)

which gives the probability of transition between adjacent states:

pf,i = t
1

ℏ2
|⟨f |V̂ |i⟩|2Sf (ωf,i). (57)

The time derivative of the probability gives the transition rate

Γf,i =
1

ℏ2
|⟨f |V̂ |i⟩|2Sf (ωf,i), (58)

where we have Sf (+ωf,i) instead o f−ωf,i because the qutrit is decaying, instead exciting. In
the case that the particle begins in the ground state, and we seek the rate of transition to the
excited state under a perturbation, we may reverse the frequency in the spectral density and
perform an identical algebraic procedure.

An interesting, but perhaps irrelevant, property to note is that the rate of relaxation between two
non-adjacent energy states is linear in time. To calculate the probability between non adjacent
states, we need to multiply the probability of a two step process, i.e. p02 = p01p12. Therefore

Γ02 =
∂p02
∂t

=
∂p01
∂t

p12 +
∂p12
∂t

p01 =
t

ℏ2
|⟨0|V̂ |1⟩|2Sf (ω0,1)|⟨1|V̂ |2⟩|2Sf (ω1,2) = tΓ01Γ12 (59)
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Appendix B: Pure Dephasing due to Adiabatic Noise
Consider a general Hamiltonian for a three-level system, similar to Eq. (1). We start by
expanding the Hamiltonian with a second order Taylor expansion about the perturbation δλ:

Ĥ = −

[
H⃗0(λ0) +

∂H⃗0

∂λ
δλ+

∂2H⃗0

∂λ2

δλ2

2
+ · · ·

]
⃗̂
S (60)

where
⃗̂
S contains the three spin-1 Pauli matrices (e.g. Sz is defined in Appendix A). Defining

D⃗λ,i ≡ 1/ℏ ∂iH⃗0/∂λ
i, we obtain the eigenbasis of H⃗0(λ0)

⃗̂
S,

Ĥ = −(ΩSz + δΩzSz + δΩ⊥S⊥). (61)

The perturbed energy is given by δΩz ≡ Dλ,1,zδλ + Dλ,2,zδλ/2 + · · · , and the contribution
of energy due to transverse terms (i.e. Sx and Sy) is δΩ⊥ ≡ Dλ,⊥δλ + · · · . The terms which
dominate decoherence are related to the derivatives of Ω(λ) as

Dλ,1,z ≡
∂Ω

∂λ
(62)

and

Dλ,2,z ≡
∂2Ω

∂λ2
−D2

λ⊥(ΩS)
−1. (63)

The Block-Redfield theory describes the dephasing rate in terms of the relaxation rate and the
’pure’ dephasing due to (short-correlated and weak) white noise as

Γ2 =
1

2
Γ1 + Γφ. (64)

For noise which is linearly coupled to the qubit, that is ∂Ω/∂λ ̸= 0, Bloch-Redfield theory
describes the ’pure’ dephasing as

Γφ = πSδΩz(ω = 0) = πD2
λ,1,zSλ(ω = 0) (65)

which resembles the Golden-rule type equations from Appendix A when the ’pure’ dephasing
consists of noise near ω ≈ 0.

For noise spectral density isolated to low frequencies, a more intricate approach may be taken.
Assuming Gaussian noise, the random phase accumulated at time t

∆ϕ = Dλ,1,z

∫ t

0

dt′δλ(t′). (66)

The resulting dephasing behavior is analogous to that of the famous Ramsey experiment, in
which 2 π/2 pulses interact with a qubit and the experimental parameter is the delay between
the pulses. The pulses are given a detuning from the qubit’s resonance frequency such that the
measured signal oscillates over the delay period. Further, the measured signal will also decay
over time with a characteristic timescale, which gives us T2. The decay law of the Ramsey signal
is given by

fz(t) = ⟨ei∆ϕ⟩ = e−⟨∆ϕ2⟩/2 = exp

[
−t2

2
D2

λ,1,z

∫ +∞

−∞
dωSλ(ω)sinc

2ωt

2

]
(67)

= exp

[
−1

2
D2

λ,1,z

∫ +∞

−∞
dωSλ(ω)

sin2(ωt/2)

(ω/2)2

]
.
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If the noise has a 1/f spectrum, and we assume the 1/f law extends in a wide range of
frequencies bounded by a lower (infrared) cut-off ωir, and an upper (ultraviolet) cut-off ωuv,
then

Sλ =
A

|ω|
, ωir < |ω| < ωuv (68)

where A parameterized the amplitude of energy fluctuations. At times t << 1/ωir the Ram-
sey decay is dominated by frequencies ω < 1/t which can be approximated as a quasistatic
contribution characterized by

fz(t) = exp

[
−t2D2

λ,1,zA

(
ln

1

ωirt
+ C

)]
. (69)

Generally, applied adiabatic noise on the external parameters of our Hamiltonian, or those which
cause dephasing, can be expressed in rate of decay of the off-diagonal density matrix elements.
These elements are, for i ̸= j,

ρij(t) = eiωijt⟨fz(t)⟩ = eiωijt⟨e−i
∫ t
0 dt′v(t′)⟩ (70)

where v(t) =
∑

k Dλk
δλk =

∑
k

∂hz({λi})
ℏ∂λk

δλk captures the propagation of errors from all external
variables onto our computational basis. Once again assuming Gaussian noise, the power spectral
density is

Sv(ω) =

∫ +∞

−∞
dτ⟨v(0)v(τ)⟩eiωτ =

∑
k

∂hz({λi})
ℏ∂λk

Sλk
(ω). (71)

This yields a density matrix that is a function of Eq (50),

ρij(t) = eiωijt exp

[
−1

2

∫ +∞

−∞

dω

2π
Sv(ω)

sin2(ωt/2)

(ω/2)2

]
. (72)

The effect of noise depends greatly on it’s autocorrelation time tc. For small autocorrelation
times compared to the time needed for the system’s manipulation and measurement, tc << t, we
may make the white noise approximation. That is, for noise spectra with a regular low-frequency
behavior, the density matrix obeys an exponential law

ρij(t) ≈ eiωijt exp

[
−1

2
|t|Sv(ω = 0)

]
. (73)

Finally, if the noise follows a 1/f spectrum, then the density matrix takes the form

ρij(t) ≈ eiωijt exp

[
−At2

ℏ2
(
∂h(ω

∂λi

)2 lnωirt

]
. (74)


