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Introduction

In this document we show that the Hamiltonian behavior of two transmon qubits coupled via a
tunable resonator may be identically modeled using either floating transmons qubits as in McKay
et al, 2016 (10.1103/PhysRevApplied.6.064007) and hereafter referred to as the ’floating’ case,
or grounded xmon qubits as in Yan et al, 2018 (10.1103/PhysRevApplied.10.054062), hereafter
referred to as the ’grounded’ case, despite these works using distinguishable circuits. Specifically,
we derive the capacitance matrix of each circuit, and show that when either Hamiltonian is
expressed in terms of such a matrix, the Hamiltonians are in fact the same.

Analytical Derivation of Circuit Hamiltonian

Consider two arbitrary superconducting qubits coupled via a tunable bus. The canonical position
coordinate for these systems is the phase at each node, denoted φi, which may be summarized
in the vector φ⃗. We will distinguish this from the flux across the Josephson junctions, which
will be denoted ϕJi = φi+1 − φi.

Figure 1. The coordinates of our system are in the convention ϕJi = φi+1 − φi

We may write the Lagrangian of this three qubit system as

L = K − U (1)

for

K =
1

2
ϕ2
o
˙⃗φ⊤C ˙⃗φ (2)

and
U =

∑
i

EJi(1− cosϕJi) (3)

To get the Hamiltonian of this system, we take the Legendre transformation into the conjugate
momentum coordinate,

H = q⃗⊤ ˙⃗φ− L (4)

for

q⃗ =
∂L

∂̇⃗φ
(5)

By taking advantage of the symmetry of C, it can be easily shown that

∂L

∂̇⃗φ
= ϕ2

oC
˙⃗φ. (6)

This gives

˙⃗φ =
1

ϕ2
o

C−1q⃗ (7)

∴ H =
1

ϕ2
o

q⃗⊤C−1q⃗ − 1

2
˙⃗φ⊤q⃗ + U =

1

2ϕ2
o

q⃗⊤C−1q⃗ + U. (8)
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Mapping Capacitances
Because these devices share a Hamiltonian, they exhibit identical physics in theory, so long as
there is a valid mapping between them. Specifically, showing that two superconducting circuits
are identical in physical behavior comes down to mapping their inverse capacitance matrices.

We will shortly note that these matrices are of different size, implying that constraints must
be enacted on the larger one to reduce the number of coordinates to that of the smaller. We
will perform a transformation into a unique basis that is analogous to describing the behavior
of coupled harmonic oscillators, not by their individual locations, but by a superposition of
harmonic modes, effectively reducing the number of parameters with which we describe the
system.

We begin with the grounded case as it’s easier to digest. Consider the circuit diagram from Yan
et al:

Figure 2. Superconducting circuit from Yan et al [2]. The circuit is implemented
using two grounded ’xmon’ devices split by a tunable resonator.

The qubits and coupler are grounded, so the effective capacitance only exists within each com-
ponent, i.e. C1, Cc, and C2, between nearest neighbor components, C1c and C2c, and a minute
capacitance reaches between the two qubits, C12. The capacitance matrix for this scheme, using
the Maxwell convention, is given as

CXmon =

C1 + C1c + C12 −C1c −C12

−C1c C1c + Cc + C2c −C2c

−C12 −C2c C2 + C2c + C12

 (9)

Which has inverse

CXmon
−1 =

1

∥CXmon∥

A11 A12 A13

A12 A22 A23

A13 A23 A33

 (10)

for

A11 = C2C2c + C1c(C2 + C2c) + (C2 + C2c)Cc + C12(C1c + C2c + Cc) (11)

A12 = C12(C1c + C2c) + C1c(C2 + C2c) (12)

A13 = C1cC2c + C12(C1c + C2c + Cc) (13)

A22 = C1c(C2 + C2c) + C1(C12 + C2 + C2c) + C12(C1c + C2 + C2c) (14)



A33 = C1c(C2c + Cc) + C1(C1c + C2c + Cc) + C12(C1c + C2c + Cc) (15)

∥CXmon∥ = C1CcC2 + C1CcC2c + CcC2C12 + C1C2C1c + C1C12Cc + C1C2C2c + C1cCcC2

+ (C1 + C2 + Cc)(C1cC2c + C2cC12 + C12C1c)
(16)

If we make the assumption that qubit-coupler capacitances are much smaller than the mode
capacitances, but bigger than the qubit-qubit coupling capacitance (as would be required for
adequate control of this system), that is C12 << Cic << Ci, then the entries simplify as follows:

CXmon
−1 ≈

 1
C1

C1c

C1Cc

C12+(C1cC2c)/Cc

C1C2
C1c

C1Cc

1
Cc

C2c

CcC2
C12+(C1cC2c)/Cc

C1C2

C2c

CcC2

1
C2

 (17)

Writing the full Hamiltonian for the grounded case gives

H =
1

2ϕ2
o

q⃗⊤CXmonq⃗ + U =
1

2ϕ2
o

∑
i

(qi
∑
j

C−1
ij qj) + U (18)

Which has diagonal terms (i = j, ϕo = 1, h = 1)

1

2
qiC

−1
ii qi =

q2i
2Ci

= 4ECi
n̂2
i (19)

where n̂i =
q̂i
2e

and ECi
= e2

2Ci
, and has off-diagonal terms (i ̸= j)

qiC
−1
ij qj = 4e2n̂iC

−1
ij n̂j = 4

Cij√
CiCj

√
ECi

ECj
(n̂in̂j) (20)

Because C−1
ij = C−1

ji , there are two contributions from each off-diagonal terms, giving the final
Hamiltonian

H = 4EC1n̂
2
1 + 4EC2n̂

2
2 + 4EC3n̂

2
c + 8

C1c√
C1Cc

√
EC1ECc(n̂1n̂c) + 8

C2c√
C2Cc

√
EC2ECc(n̂2n̂c)

+ 8(1 + η)
C12√
C1C2

√
EC1EC2(n̂1n̂2) + U

(21)

where η = C1cC2c/C12Cc arises from the fact that CcC12 and C1cCc2 may be of the same order
(see entry 3,3 of the inverse capacitance matrix). Note that the coefficients in front of the
off-diagonal terms give the coupling strengths between each of the qubits:
For

ωλ = 8
√

EJλECλ
(22)

,

gj =
1

2

Cij√
CiCj

√
ECi

ECj
(n̂in̂j) (23)

Now, take the circuit diagram from McKay et al:

Because these qubits are not grounded, there exists a capacitance between each node and ground.
For each of the six nodes, let this capacitance be Cgi for i ∈ {1, 2, 3, 4, 5, 6}. Let the capacitances
between each node be Cij for neighboring nodes i and j. We define the Capacitance Matrix
CFloat using the Maxwell convention. For this circuit:



Figure 3. Superconducting circuit from McKay et al [1]. The circuit is imple-
mented with two floating transmons coupled with a tunable resonator.

CFloat =


Cg1 + C12 −C12 0 0 0 0
−C12 Cg2 + C12 + C23 −C23 0 0 0
0 −C23 Cg3 + C23 + C34 −C34 0 0
0 0 −C34 Cg4 + C34 + C45 −C45 0
0 0 0 −C45 Cg5 + C45 + C56 −C56

0 0 0 0 −C56 Cg6 + C56


Comparing this with the matrixCXmon, it’s obvious that size of these matrices differs, preventing
us from making a direct mapping to show the circuit equivalence. To circumvent this issue, we
may return to the Lagrangian, and enact a change of bases. Once again, consider the circuit
Lagrangian:

L ′ =
ϕ2
o

2
˙⃗φ⊤CFloat

˙⃗φ− U (24)

and consider the following coordinate transformation:

ϕ⃗ = T φ⃗ → φ⃗ = T−1ϕ⃗. (25)

This takes our Lagrangian to

L ′ =
ϕ2
o

2
˙⃗
ϕ⊤(T−1)⊤CFloatT

−1 ˙⃗ϕ− U =
ϕ2
o

2
˙⃗
ϕ⊤C̃

˙⃗
ϕ− U (26)

where C̃ = (T−1)⊤CFloatT
−1. From our previous Legendre transformation, we see that

H ′ =
1

2ϕ2
o

q⃗⊤[(T−1)⊤CFloatT
−1]−1q⃗ + U =

1

2ϕ2
o

q⃗⊤C̃−1q⃗ + U (27)

where

q⃗ =
∂L ′

∂
˙⃗
ϕ

= ϕ2
o(T

−1)⊤CFloat
˙⃗φ = ϕ2

oC̃
˙⃗
ϕ. (28)

The variable q⃗ contains the charges on the qubit and coupler islands. What we seek to show is
that through the coordinate transformation T , q⃗ contains three variables which we can map to
our grounded circuit, and three offsets to our Hamiltonian, representative of the static charges.
Because our qubits are in the transmon regime, charge dispersion is exponentially suppressed, so
our energy levels and thus operating frequencies are independent of static charges which behave
like an offset to our system. Therefore, static charges should not effect the behavior, much like
a force step function will offset the equilibrium position of an oscillator, but the modes of the
system will remain the same. To simplify the math further, let

Q⃗ = C ˙⃗φ (29)

s.t.



q⃗ = ϕ2
o(T

−1)⊤Q⃗. (30)

Now we seek a transformation T that satisfies the following two conditions:

(T−1)⊤Q⃗ =


q1
∗
q3
∗
q5
∗

 (31)

and

T φ⃗ =


ϕ1

∗
ϕ2

∗
ϕ3

∗

 (32)

where the unknown terms, denoted ∗ are arbitrarily chosen by us. This form of ϕ⃗ and q⃗ express
our system in terms of the charge differences across neighboring nodes, which vary with bias
voltage (proportional to ˙⃗φ), whereas the static charges may be ignored as a constant offset (as
mentioned above). To satisfy these conditions, it is convenient to choose (for any real numbers
a, b and c)

(T−1)⊤ =


− 1

a
a−1
a

0 0 0 0
1 1 0 0 0 0
0 0 −1

b
b−1
b

0 0
0 0 1 1 0 0
0 0 0 0 −1

c
c−1
c

0 0 0 0 1 1

 (33)

T−1 =


− 1

a
1 0 0 0 0

a−1
a

1 0 0 0 0
0 0 −1

b
1 0 0

0 0 b−1
b

1 0 0
0 0 0 0 −1

c
1

0 0 0 0 c−1
c

1

 (34)

We choose a = b = c = 1 for simplicity, such that

T = T−1 =


−1 1 0 0 0 0
0 1 0 0 0 0
0 0 −1 1 0 0
0 0 0 1 0 0
0 0 0 0 −1 1
0 0 0 0 0 1

 (35)

Returning to our transformed position ϕ⃗ and it’s conjugate momentum q⃗, we find

ϕ⃗ = T φ⃗ =


φ2 − φ1

φ2

φ4 − φ3

φ4

φ6 − φ5

φ6

 =


ϕJ1

φ2

ϕJ2

φ4

ϕJ3

φ6

 (36)



and

q⃗ = ϕ2
o(T

−1)⊤Q⃗ = ϕ2
o


−Q1

Q1 +Q2

−Q3

Q3 +Q4

−Q5

Q5 +Q6

 (37)

Recall the full Hamiltonian for this circuit,

H ′ =
1

2ϕ2
o

q⃗⊤C̃−1q⃗ +
3∑

i=1

−EJi cosϕJi . (38)

This function has 36 charge terms of the form qiC̃
−1
ij qj for i, j ∈ {1, 2, 3, 4, 5, 6}, as a result of

the Kinetic energy, and three flux terms as a result of the Potential. Before we analytically solve
for the inverse capacitance matrix to extract the coefficients, it’s would be helpful to simplify
the Hamiltonian to the terms we care about. In this case, we can make a comparison to the
Hamiltonian of an isolated transmon, from which we’ll see an offset charge has little effect.
Then, in the approximation that offset charge may be ignored, we will see that the capacitance
matrix will also simplify to that of the grounded transmon.

First, consider the possible terms in the floating qubit Hamiltonian. There is the diagonal case,
i = j, which leads to 6 Kinetic energy terms

Kii = Hiin̂
2
i (39)

where n̂i is the quantum mechanical number operator resulting from the ith charge coordinate,
scaled by the single qubit charge energy Hii which comes from the capacitance matrix. If
i = {1, 3, 5}, then there is an associated potential term, allowing us to combine some terms of
the Hamiltonian

Hi∈{1,3,5} = Hiin̂
2
i − EJi cosϕJi (40)

Note: This is the Hamiltonian for an isolated transmon qubit, or of an anharmonic oscillator.
It has the same form as the grounded qubits in the earlier example. Now consider the diagonal
terms from i = {2, 4, 6} in addition to the off-diagonal terms, i ̸= j, which have Kinetic energies
of the form

Kij = Hijn̂in̂j. (41)

which we can use to express the isolated Hamiltonians as

Hλ = H̃λ(n̂λ + n̂g)
2 − EJλ cosϕJλ (42)

where n̂g = αn̂2+βn̂4+γn̂6 captures all of the terms from Eq(39) and Eq(41) when i, j = {2, 4, 6}.
We map i ∈ {1, 3, 5} → λ ∈ {Q1, c, Q2} to indicate qubit 1, the coupler, or qubit 2, respectively.
H̃λ is the effective charge energy resulting from the isolated transmons with a charge offset.
It depends on the results of the inverse capacitance matrix, however, because we are in the
transmon regime, the effect of charge noise on the eigenvalues will be exponentially suppressed.
This leads to the approximation that H̃ ≈ Hii.

Left to handle is the cross terms between qubits, which affect the dynamics of our system
because these terms dictate the interactions between our qubits and the coupler and between
the two qubits. These interations are, specifically, n̂1n̂3 and n̂5n̂3. In terms of our node labels,
(λ, c) ∈ {(Q1, c), (Q2, c)} → (i, j) ∈ {(1, 3), (5, 3)}



Kλc = gλcn̂λn̂c (43)

Therefore, the floating Hamiltonian in its full form is given by

H ′ = HQ1 + g1cn̂Q1n̂c + Hc + g2cn̂Q2n̂c + HQ2

= H̃Q1(n̂1 + n̂g)
2 + H̃c(n̂3 + n̂g)

2 + H̃Q2(n̂5 + n̂g)
2

+ g1cn̂1n̂3 + g2cn̂3n̂5 − EJ1 cosϕJ1 − EJ3 cosϕJ3 − EJ5 cosϕJ5 .

(44)

We have successfully matched this Hamiltonian with that of the grounded case. The last step
is mapping the coefficients in the floating Hamiltonian, H̃λ and gλc to the coefficients in the
grounded Hamiltonian.

The matrix C̃−1 may be written as a 6×6 matrix with entries C̃−1
ij But we only care about 9 of

these entries, so effectively

C̃−1 =
1

∥C̃∥

Ã11 Ã12 Ã13

Ã21 Ã22 Ã23

Ã31 Ã32 Ã33

 (45)

where ∥C̃∥ is the determinant of capacitance matrix. The coordinates that matter most are
n̂in̂j for i, j ∈ {1, 3, 5} as these determine the dynamics of the system’s energy in the transmon

regime. As such, we can assign Ãij = A(i−1)/2,(j−1)/2 where A is the components of the inverse
capacitance for the grounded circuit. We can make the same approximations as we did in the
grounded circuit to arrive at equivalent coupling terms. These assumptions can be confirmed
numerically.

Numerical Results
Consider the following circuit, representing some arbitrary configuration of three floating qubits:

Figure 4. Realistically, there are capacitance terms between every neighboring
node. Notice that this varies slightly from the McKay case; we have introduced
C14 and C36. Now we will show that in a certain limit, our transformed floating
inverse capacitance matrix will converge to that of the grounded case.

We aimed to show that the floating and grounded Hamiltonians are equivalent by taking

lim
Cg1,Cg4,Cg5→∞ and Cg2,Cg3,Cg6,C14,C45→0

C̃−1 = C−1
Y an

when assuming C12, C34, C56 >> C23, C36 >> all other capacitance omitted from the circuit, as
in the grounded case.



Below are plots for the 6 different entries in our matrix.
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Figure 5. The red line is the value of the correlated entry in the grounded inverse
capacitance matrix. The blue line is the inverse capacitance matrix elements from
the floating circuit as a function of the limit towards infinity (x-axis). The absolute
value of the coupling terms C1c and C2c are graphed. The reflection about the
x-axis is a consequence of our transformation and we believe is has no physical
implications.
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