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Abstract

In this project, we performed electronic bandstructure calculations of monolayer MoS2 using
Slater–Koster tight-binding approximation and applied quasi-ballistic transport model to obtain
an analytical drain current expression for MoS2-based transistor. Finally, we compared our results
to existing data in the literature to both validate our model.

1 Introduction

The pursuit of the semiconductor industry continues to drive transistors to nanoscale dimensions while
maintaining high power efficiency. As transistors continue to scale down, conventional silicon-based
field-effect transistors (FETs) suffer from short-channel effects, adversely affecting their performance
and reliability. Two-dimensional (2D) materials, such as transition metal dichalcogenides (TMDs)
and graphene, emerge as promising alternatives due to their exceptional electrical properties. These
materials have the potential to overcome the limitations of traditional silicon FETs, offering improved
performance and scalability at nanoscale dimensions. Among these materials, TMDs and graphene
heterostructures are particularly important for their electrical characteristics, which make them suit-
able for transistor applications. In this context, we perform modeling of a monolayer MoS2 transistor
with graphene as metal contacts. Our focus is on analyzing the current-voltage (IV) characteristics
from the experimental results in [1] using the using Slater–Koster tight-binding approximation and
applied quasi-ballistic transport model to obtain an analytical drain current expression.

2 Bandstrucure Calculation

The structure of monolayer MoS2 is shown in Fig. 1a) with lattice vectors a1 = a(1, 0), a2 =
a(−1/2,

√
3/2) and reciprocal-space vectors b1 = 2π

a (1, 1/
√
3) and b2 = 4π

a
√
3
(0, 1). The lattice con-

stant of MoS2 is 3.16Å. The Brilouin zone is show in Fig. 1c) with the high-symmetry points
Γ = (0, 0),K = 4π/3a(1, 0) and M = 4π/3a(0,

√
3/2). The electronic bandstructure of MoS2 was

analyzed through Slater–Koster tight-binding (TB) formalism presented in [2]. Under this formalism,
the relevant atomic orbital basis for a monolayer is the orbitals of each atom, labeled as

ψ̂†
pd =

[
d̂†z2 , d̂

†
xy, d̂

†
x2−y2 , d̂

†
xz, d̂

†
yz, p̂

A†
x , p̂A†

y , p̂A†
z , p̂B†

x , p̂B†
y , p̂B†

z

]
.

Due to the symmetry present in the structure, the orbital is mapped to a new basis Table. 5,

ϕ̂†eo =
[
d̂(o)†xz , d̂(o)†yz , p̂(o)†z , p̂(o)†x , p̂(o)†y , d̂

(e)†
z2 , d̂(e)†xy , d̂

(e)†
x2−y2 , p̂

(e)†
z , p̂(e)†x , p̂(e)†y

]
The hopping terms are visualized in Fig. 1b) with hopping vectors given in Table 1. The connected
orbitals in the different hopping terms of the Hamiltonian are defined in the Appendix.

The expressions and fitting parameters for the TB model are given in Appendix and [2]. The
bandstructure calculated from this model is plotted in Fig.2a) and compared to electronic bandstruc-
ture from DFT calculations in Fig.2b) [3]. The effective masses at the K point are determined to be

m∗
e = 0.505m0 for electrons and m∗

h = 0.448m0 for holes after quadratic fitting using h̄2/∂2E
∂k2 , which is

comparable to the result presented in [4]. The ballistic injection velocity is given by vT

(
1−e

− eVDS
kBT

1+e
− eVDS

kBT

)
,

where vT =
√
2kBT/πm∗ ≈ 7.6× 106 cm/s. The group velocity is calculated from the band structure

near the K point is shown in Fig. 2 c) and d), where v = ∂ω
∂k = 1

h̄
∂E
∂k ≈ ×107 cm/s.
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t(1), t(2), t(3) δ1 = a1, δ2 = a1 + a2, δ3 = a2

t(4), t(5) δ4 = − (2a1 + a2) /3, δ5 = (a1 + 2a2) /3
δ6 = (a1 − a2) /3

t(6) δ7 = −2 (a1 + 2a2) /3, δ8 = 2 (2a1 + a2) /3
δ9 = 2 (a2 − a1) /3

Table 1: Hopping vectors

Figure 1: a) Atomic structure of monolayer MoS2 b) The crystal structure of monolayer MoS2 with
all hopping terms in the tight-binding formalism: Mo-Mo coupling with first-neighbor pairs (t(1)); S-S
coupling with first-neighbor pairs (t(2), t(3)); S-Mo coupling of with neighbor pairs (t(4), t(5), t(6)). c)
Brillouin zone of monolayer MoS2.

3 Data Extraction from Literature

To extract data from the analyzed publication [1] we use an online plot digitizer.
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Figure 2: a) Bandstructure of monolayer MoS2 from DFT. b) Bandstructure of monolayer MoS2 from
tight-binding model. c) The group velocity near the K-point in the x. d) The group velocity near the
K-point in the y direction.

(a) (b)

Figure 3: Example of data extraction. (a) Digitized Figure 3c from [1]; (b) same figure in linear scale
for clarity.

4 Modeling MOSFET

4.1 Primary Model: Numeric Quasi-Ballistic

4.1.1 Description

To investigate the dependence of drain current on drain voltage, we utilize the following model, which
is highly inspired by the numerical quasi-ballistic approach found in [5]. The drain-source current can
be expressed using positive- and negative-going fluxes:

IDS = 2Wq
[
F+(0)− F−(0)

]
, (1)
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where q is the elementary charge, W is the channel width, and F+/−(0) are the carrier fluxes. In the
case of a 2D system with a parabolic spectrum, F+(0) can be expressed as follows:

F+(0) =

∫ ∞

0

D2D(E)f(E)vinj dE, (2)

whereD2D(E) = m∗

πh̄2Θ(E−EC) is the 2D density of states, expressed using the Heaviside step function,
f(E) is the Fermi distribution function, and vinj is the carrier injection velocity. The integral may be
evaluated as

F+(0) =
m∗vinj

πh̄2

∫ ∞

0

Θ(E − EC) dE

1 + exp
(

E−EF

kBT

) =
m∗vinj

πh̄2
ς0(EF ), (3)

where EF = qVCH, VCH is the voltage drop across the quantum capacitance. Using the same logic, we
write down the relation for the flux moving in the backward direction from the drain:

F−(L) = F+(0)
ς0 (EF − qVDS)

ς0(EF )
. (4)

For simplicity, we assume that the reflection probability of carriers is constant over the energy range
of interest. Also, we assume that typical VDS <

kBT
q , such that scattering is the same for carriers going

from source to drain and vice versa. Hence, we have the following:

F−(0) = rF+(0) + (1− r)F−(L). (5)

The final relation for current:

IDS = 2Wq
[
F+(0)− F−(0)

]
= 2Wq

[
F+(0)− rF+(0)− (1− r)F+(0)

ς0 (EF − qVDS)

ς0(EF )

]
= 2WqF+(0)

[
1− r − (1− r)

ς0 (EF − qVDS)

ς0(EF )

]

= 2Wq
m∗vinj

πh̄2
ς0(EF )

[
1− r − (1− r)

ς0 (EF − qVDS)

ς0(EF )

]
. (6)

VCH is given by COX

COX+CD
(VBG −VT), where COX is the capacitance per unit area of the oxide (COX =

εOX/t, where t is the thickness of the oxide), CD is the quantum capacitance, VBG is the applied back-
gate voltage, and VT is introduced to consider the work function difference between the gate material
and MoS2, and for the charges at the MoS2/oxide interface.

4.1.2 Fitting Parameters

Due to source/drain contact resistance we only observe the effective drain bias VDS = Vapp DS −
IDS(RS+RD), where Vapp DS represents the applied drain bias, and RS and RD denote the resistances
at the source and drain, respectively. As a straightforward expression of IDS requires iterative solutions
of the drain-voltage and drain-current equations, we will model Vapp DS as VDS = (1−β)Vapp DS. Here,
β is a variable fitting parameter, influenced by the source/drain contact resistances and drain biases.
The backscattering coefficient r in a low-field limit can be described as r = L/(L+ λ), where L is the
channel length and λ is a low-field momentum relaxation length, treated as a fitting parameter. We
consider multiplying the current amplitude by a scaling factor A to account for the real value of vinj as
a portion of vT . Also instead of COX

COX+CD
, we use Cfit. The dimensionless parameter Cfit represents the

conversion factor between the real voltage applied to the gate and the effective voltage in the channel.
Therefore, the final list of fitting parameters is [A, VT , r, β, Cfit].

4.1.3 Fitting

First we consider IDS(VBG):
Table 2 shows the values obtained after the fitting procedure. As can be seen, there is a tiny

discrepancy in the values. For simplicity, let’s consider the mean values of each parameter. Now, we
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Figure 4: Fitting drain current dependency on back gate voltage for an 8nm channel.

VDS A VT [V] r β Cfit

20mV 0.77 11.248 0.80 0.998 0.001197
100mV 0.78 11.245 0.84 0.999 0.001154

Table 2: Values of the fitting parameters for the model.

Figure 5: Fitting drain current dependency on drain voltage for an 8 [nm] channel.

can evaluate how well our fitting corresponds to the drain current dependence on drain voltage (Figure
3b in [1]).

Figure 5 illustrates the dependency of the source-drain current on the applied drain voltages. This
dependency was fitted using the parameters obtained in the previous step, as summarized in Table 2.
The resulting fit demonstrates excellent agreement with the published data.

5



4.1.4 Analysis

• 2Rc: To compare the contact resistance calculated from fitting parameters with the experimen-
tally obtained values, we use:

β =
IDS

Vapp DS
(RS +RD) =

IDS

Vapp DS
2Rc ⇒ 2Rc = β

Vapp DS

IDS

The results for 2Rc are presented in Figure 6.

Figure 6: 2Rc dependence on VBG. The real data is taken from Figure 4c [1].

In this analysis, one can observe a good estimation of contact resistance at 60 V, with an increas-
ing error discrepancy as the voltage decreases. This can be attributed to the fact that the initial
fitting was based on only two curves, representing the IDS dependence on VBG at drain voltages
of 20 mV and 100 mV. The mean values of the fitting parameters from these curves were used
to model the current. To address these discrepancies, a more refined model for gate-controlled
population in the channel should be developed, or alternatively, more fitting parameter values
should be extracted from a greater number of IDS(VBG) curves using the current model.

• µ: By fitting the backscattering coefficient r, we can estimate µ:

µ =
vTqλ

2kBT
=
vTqL

2kBT

(1− r)

r

For L = 8 nm, the resulting µ ≈ 28 cm2V−1s−1, which is in excellent agreement with µ ≈
27 cm2V−1s−1 reported in the publication.

• Cfit: The oxide capacitance COX can be calculated using the fabrication details provided in [1].
It is given by COX = εOX

tOX
= 1.12 × 10−4 [F/m2]. For Cfit = 11.97 × 10−4 [F/m2], the depletion

capacitance CD is determined to be 0.0935 [F/m2]. This result indicates a predominant influence
of the depletion capacitance, which is typical for a transistor in the ON state.

4.1.5 Discussion

Our model demonstrated adequate proficiency in fitting the experimental data. Employing parameters
derived from the IDS(VBG) curve fitting (as shown in Figure 4), we successfully generated IDS(VDS)
curves (refer to Figure 5) that closely matched the experimental observations. Furthermore, the
extracted values of 2RC (at VBG = 60 V) and µ are in strong agreement with those reported in the
referenced publication. However, it is important to acknowledge certain limitations. As evidenced
in Figure 4, the initial fitting does exhibit some discrepancies. Moreover, the increasing discrepancy
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in 2RC(VBG) (illustrated in Figure 6) and the unusually high value of CD highlight areas where our
model assumptions could be refined. A critical area for improvement is the function h, which models
how the gate voltage VBG translates into the channel voltage VCH = h(VBG). Our current linear
model is inadequate to provide a consistent fit across the entire range of VDS and VBG values. To
produce a better fitting model, a more self-consistent approach considering both the field and carrier
concentrations in a channel may be considered.

4.2 Additional Models: Non-Degeneracy & the Low Field Regime

Here we discuss two simplified models for fitting the data in the forward bias region, or once a near-
linear region is observed. These models, although less rigorous than the previous discussion, offer key
insight into the physical properties of the device in the ON state.

4.2.1 Non-Degenerate Quasi Ballistic

Applying the calculations used in part 4.1 while making the non-degenerate approximation (EC−EF ≥
3kBT ) about the bandstructure, we arrive at an alternative model that may be used to approximate
the device at hand:

IDS =WC(VBG − VT )
vT

1 +
2leff

λ

1− e
−eVDS
kBT

1
1+r + 1−r

1+r e
−eVDS
kBT

, (7)

where vT ≡
√

2kBT
πm∗ is the thermal velocity, leff is the effective channel length, λ is the mean free path,

r is the reflection coefficient under the same assumption that rS = rD made in the previous model,
and C = COX

COX+CD
as before.

The fitting parameters of such a model are VT , leff/λ, and C, where we have fixed r=0.8 from
our analysis in the first model. Because we know the channel length to be small L = 8nm ≈ leff ,
fitting leff/λ approximates λ. This tells us whether the device behaves more ballistic (L/λ << 1),
or resistive (L/λ >> 1). Fitting the reflection coefficient speaks to the resistance, which in a semi-
classical model is proportional to leff/(1 − r)λ. Finally, the capacitance should be fitted to account
for discrepancies in the gate voltage, as was mentioned in the previous section. There is a caveat for
fitting the non-degenerate quasi-ballistic model to the data given in the publication. The nature of
the exponential decay in VDS causes IDS to plateau if room temperature (T = 300K) is assumed since
VDS,Sat ≈ kbT/q , so accurately fitting to IDS vs. VDS data was found to be not applicable.

4.2.2 Low Field Regime

A less rigorous model for ’back-of-the-envelope’ calculations may be a linear IV relation in the low-field
regime. For a device with channel length L, width W , operating at VBG > 0, VDS < kBT/q,

IDS,Low Field ≈ W

L
µ′C(VBG − VT )VDS , (8)

where µ′ = ( 1
µB

+ 1
µ )

−1 is the effective mobility – the analytical Ballistic mobility µB ≡ qLνT

2kBT and a
correction term in parallel. Like the last models, the low-field approximation fits VT , but unlike these
models, it fits the prefactor µ′ by changing the correction term µ, instead of the capacitance.
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Figure 7: Fitted Non-Degenerate Quasi-Ballistic and Low Field models fit to IDS vs. VBG data.

4.2.3 Results

Fitting these models resulted in the parameters found in Tables 3 and 4. The fits are plotted in
Fig. 7 and 8. Note that the reference voltage tends to agree with the primary model discussed
earlier. Further, the fitted capacitance in the non-degenerate approximation is on the right order of
magnitude. Interestingly, we have leff/λ >> 1 regardless of the drain voltage. This tells us that the
FET is behaving similarly to a resistor. From our fits of the mobility correction, we find mobility
higher than reported in the publication, µ′ = 43.125, as calculated by Matthiessen’s rule.

VDS VT [V] leff/λ Cfit[F/m
2]

20mV 12.08 631.789 0.308× 10−3

100mV 11.564 995.607 2.527× 10−3

Table 3: Values of the fitting parameters for the Non-Degenerate Quasi-Ballistic model.

VDS VT [V] µ[cm2/Vs]
20mV 12.08 41.579
100mV 11.564 43.290

Table 4: Values of the fitting parameters for the Low Field model.

4.2.4 Discussion

As we found with the explicit modeling done in Sec. 4.1, an exponential function does not capture the
IV relationship of this device in the strong forward bias regime VBG ≥ 20V. Therefore, we seek linear
approximations valid under the device’s conditions. In this section, we observed two potential models
that may lead to a better approximation of the device’s behavior beyond the threshold voltage. We
found that the linear IV relationship requires leff/λ >> 1 implying highly resistive behavior when
VBG is large and positive. This can equivalently be interpreted as a substantial correction to the
ballistic mobility of charge carriers, as we found with the Low Field approximation.
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Figure 8: Low Field models fit to IDS vs. VDS data. We can observe how the model fails as Vg →< 0.
While the linear fit is successful in the positive regime, it does not take into account the IV behavior
near the threshold voltage. As such, we see the model fit the incorrect gate voltage at low VBG.

5 Conclusion

This report summarizes modeling and analysis done on a back-gated FET with a MoS2 channel that
uses graphene for metal contacts. Fabrication and characterization of the device are presented in [1]
and represent a stone overturned in the search for new materials to incorporate in future electronics.
By modeling the extracted data with several models ranging in complexity, we have found interesting
traits of the device channel thought to be credited to the TMD. In particular, we found the device to
behave in a resistive manner at VBG > VT , similar to short-channel Si devices. However, the physical
contributions to the resistivity may come from various other sources such as imperfections during the
fabrication process, and electron-electron interactions that are out of the scope of this report.

New device technologies require scalable fabrication techniques, and although 2D materials may
scale down, devices composed of these materials cannot scale up. Currently, TMDs must be grown,
often using Molecular Beam Epitaxy, while high-quality graphene must be manually exfoliated from
graphite – a tedious extraction process that does not open doors to wide-scale production. As we have
shown in our analysis, the device properties are not outstanding. We conclude that at this point such a
device does not have commercial viability, but TMDs may be involved in future transistor technologies
depending on the direction of research.

6 Resources

The code used for this analysis may be found on GitHub: https://github.com/eliaslehman/EE230.
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Index Basis Function

1 d
(o)
xz = dxz

2 d
(o)
yz = dyz

3 p
(o)
z = 1√

2

(
pAz + pBz

)
4 p

(o)
x = 1√

2

(
pAx − pBx

)
5 p

(o)
y = 1√

2

(
pAy − pBy

)
6 d

(e)
z2 = dz2

7 d
(e)
xy = dxy

8 d
(e)
x2−y2 = dx2−y2

9 p
(e)
z = 1√

2

(
pAz − pBz

)
10 p

(e)
x = 1√

2

(
pAx + pBx

)
11 p

(e)
y = 1√

2

(
pAy + pBy

)
Table 5: New basis orbitals for tight-binding formalism

7 Appendix A

The tight-binding Hamiltonian is given by

H(k) = H(1) +H′(1)

The diagonal terms of the tight-binding Hamiltonian take the form:

H(1)
i,i (k) = ϵi + 2t

(1)
i,i cosk · δ1 + 2t

(2)
i,i [cos (k · δ2) + cos (k · δ3)]

Due to the symmetry of the i and j orbitals: for (i, j) = (3, 5), (6, 8), (9, 11), the symmetry is (+),
giving

H(1)
i,j (k) =2t

(1)
i,j cosk · δ1 + t

(2)
i,j

[
e−ik·δ2 + e−ik·δ3

]
+ t

(3)
i,j

[
eik·δ2 + eik·δ3

]
For (i, j) = (1, 2), (3, 4), (4, 5), (6, 7), (7, 8), (9, 10), (10, 11), the symmetry is (−), giving

H(1)
i,j (k) =− 2it

(1)
i,j sink · δ1 + t

(2)
i,j

[
e−ik·δ2 − e−ik·δ3

]
+ t

(3)
i,j

[
−eik·δ2 + eik·δ3

]
For the pairs (i, j) = (3, 1), (5, 1), (4, 2), (10, 6), (9, 7), (11, 7), (10, 8), the symmetry is (+), giving

H(1)
i,j (k) = t

(4)
i,j

[
eik·δ4 − eik·δ6

]
For the pairs (i, j) = (4, 1), (3, 2), (5, 2), (9, 6), (11, 6), (10, 7), (9, 8), (11, 8),

H(1)
i,j (k) = t

(4)
i,j

[
eik·δ4 + eik·δ6

]
+ t

(5)
i,j e

ik·δ5

And H(1)
i,j (k) = H(1)

j,i (k)
∗ and otherwise unassigned H(1)

i,j (k) terms are zero. The correction matrix
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H′(1)
i,i from the second nearest hopping is given by

H′(1)
9,6 (k) = t

(6)
9,6

(
eik·δ7 + eik·δ8 + eik·δ9

)
H′(1)

11,6(k) = t
(6)
11,6

(
eik·δ7 − 1

2
eik·δ8 − 1

2
eik·δ9

)
H′(1)

10,6(k) =

√
3

2
t
(6)
11,6

(
−eik·δ8 + eik·δ9

)
H′(1)

9,8 (k) = t
(6)
9,8

(
eik·δ7 − 1

2
eik·δ8 − 1

2
eik·δ9

)
H′(1)

9,7 (k) =

√
3

2
t
(6)
9,8

(
−eik·δ8 + eik·δ9

)
H′(1)

10,7(k) =
3

4
t
(6)
11,8

(
eik·δ8 + eik·δ9

)
H′(1)

11,7(k) = H′(1)
10,8(k) =

√
3

4
t
(6)
11,8

(
eik·δ8 − eik·δ9

)
H′(1)

11,8(k) = t
(6)
11,8

(
eik·δ7 +

1

4
eik·δ8 +

1

4
eik·δ9

)
The tight-binding parameters are given by

Values(eV) Values(eV) Values(eV) Values(eV)

ϵ1 = ϵ2 1.0688 t
(1)
4,4 0.8651 t

(1)
9,11 0.0075 t

(5)
5,2 2.1584

ϵ3 −0.7755 t
(1)
5,5 −0.1872 t

(1)
1,2 −0.2562 t

(5)
9,6 −0.8836

ϵ4 = ϵ5 −1.2902 t
(1)
6,6 −0.2979 t

(1)
3,4 −0.0995 t

(5)
11,6 −0.9402

ϵ6 −0.1380 t
(1)
7,7 0.2747 t

(1)
4,5 −0.0705 t

(5)
10,7 1.4114

ϵ7 = ϵ8 0.0874 t
(1)
8,8 −0.5581 t

(1)
6,7 −0.1145 t

(5)
9,8 −0.9535

ϵ9 −2.8949 t
(1)
9,9 −0.1916 t

(1)
7,8 −0.2487 t

(5)
11,8 0.6517

ϵ10 = ϵ11 −1.9065 t
(1)
10,10 0.9122 t

(1)
9,10 0.1063 t

(6)
9,6 −0.0686

t
(1)
1,1 −0.2069 t

(1)
11,11 0.0059 t

(1)
10,11 −0.0385 t

(6)
11,6 −0.1498

t
(1)
2,2 0.0323 t

(1)
3,5 −0.0679 t

(5)
4,1 −0.7883 t

(6)
9,8 −0.2205

t
(1)
3,3 −0.1739 t

(1)
6,8 0.4096 t

(5)
3,2 −1.3790 t

(6)
11,8 −0.2451

For the sets of indexes: (α = 1, β = 2), (α = 4, β = 5, γ = 3), (α = 7, β = 8, γ = 6), (α = 10, β =
11, γ = 9) with the first superscript index corresponding to (+) and the second to (−), we have the
following relations:

ϵα = ϵβ

t(2)α,α =
1

4
t(1)α,α +

3

4
t
(1)
β,β

t
(2)
β,β =

3

4
t(1)α,α +

1

4
t
(1)
β,β

t(2)γ,γ = t(1)γ,γ

t
(2,3)
γ,β = ±

√
3

2
t(1)γ,α − 1

2
t
(1)
γ,β

t
(2,3)
α,β = ±

√
3

4

(
t(1)α,α − t

(1)
β,β

)
− t

(1)
α,β

t(2,3)γ,α =
1

2
t(1)γ,α ±

√
3

2
t
(1)
γ,β
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while for (α = 1, β = 2, α′ = 4, β′ = 5, γ′ = 3) , (α = 7, β = 8, α′ = 10, β′ = 11, γ′ = 9), we have:

t
(4)
α′,α =

1

4
t
(5)
α′,α +

3

4
t
(5)
β′,β

t
(4)
β′,β =

3

4
t
(5)
α′,α +

1

4
t
(5)
β′,β

t
(4)
β′,α = t

(4)
α′,β = −

√
3

4
t
(5)
α′,α +

√
3

4
t
(5)
β′,β

t
(4)
γ′,α = −

√
3

2
t
(5)
γ′,β

t
(4)
γ′,β = −1

2
t
(5)
γ′,β

t
(4)
9,6 = t

(5)
9,6, t

(4)
10,6 =

−
√
3

2
t
(5)
11,6, t

(4)
11,6 =

−1

2
t
(5)
11,6
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