
Design and Implementation of a 3-stage RISC-V CPU

Jack Hughes, Elias Lehman

May 9, 2024

Abstract

In this project we implement a 3-stage pipeline and one-way set associative cache to process
the base RISC-V instruction set architecture (ISA). We validate the performance of our core logic
using a provided assembly test suite, achieving a minimum clock period of 18ns (55.5 MHz).
Although our cache design passes tests on most RISC-V instructions, it fails to correctly store and
subsequently load data. We perform place and route (PAR) free of design rule violations using
Cadence Innovus despite the cache setback. The most up-to-date commit (which should be used
for grading) in on branch jack-cache.

1 Design

We chose to design a 3-stage pipeline as depicted in Figure 1. In this section, we will go through the
major components of our design from left (fetch/decode) to right (memory/writeback) then discuss
the cache in the proceeding section. For most wires and regs, D, E, or M prefixes indicate which stage
of the pipeline the wire is tied to; Decode, Execute, or Memory, respectively.

m
em

_r
w

pc_4

d_
pc

_n
ex

t

adder

jalr

PC

d_pc
+4

val bubble

Data Mem

Instruction
Memory

ir[24:20]

ir[19:15]

Register
File

ir[31:12] UType
Sign ext.

ir[31:12] UJType
Sign ext.

ir[31:0] Decoder

ir[21:10] IType
Sign ext.

ir[31:25] SType
Sign ext.

C
op

ro
ce

ss
or

 R
eg

is
te

r 

ir[11:7]

wdata

Memory bypass

ALU bypass

m
em

_v
al

w
b_

se
l

Reg
File

ir[
11

:7
]

rf_
w

en

RS2

RS1

w
d

wa
enOP2

CTRL

RS2

fr_rs1

dec_kill

NOP

control
signals

addr

OP1

if_kill

da
ta

addr da
ta

rf_rs2

Op2Sel

pc_4

PC

br_eq?
br_lt?
br_ltu?

Branch
CodeGen

addr

rdata

htif_tohost

wb_sel

+4

+

<<1

Branch & Jump
TargetGen

br_or_jump

pc_sel

alu_func

ALU

FETCH/DECODE EXECUTE MEMORY/WRITEBACK

ALU
OUT

init
(0x2000)

init
(0x2000)

Figure 1: Block diagram of the implemented core.

1



1.1 Pipeline Design

The first major set of design questions relates to how we fetch instructions and how we increment
the PC. When we increment the PC, we have three options: 1) PC + 4 to fetch the next instruction
from the icache, 2) a signal call br or jmp which is the branch or jump target that is generated in
the execute stage by adding the instructions PC to either an immediate offset or a register offset, or
3) no change to the PC. We continuously assign the D PC Next value to one of these three options
depending on the instruction and other control flow parameters (i.e. are we stalling or bubbling?).
The D PC0 register pushes D PC Next to D PC on each clock cycle. Another thing to note is that for
conditional branches, we predict branch not taken. For jumps, we don’t care what the next PC will
be because we will insert a bubble in the pipeline on the next instruction.

Now we encounter the instruction cache which will be discussed later. Some key things to note are
that on a read hit, the cache will return the data after 2 cycles. On a read miss, there is a 4-cycle
penalty to read from the main memory into the cache, so 6 cycles will be required before the pipeline
can resume. Lastly, when the icache or dcache is stalled (it cannot accept new requests because it is
busy), the pipeline will stall. This is accomplished by tying the mem stall signal to the clock enable
of each pipeline register.

Next, we come across a MUX that represents our logic for needing to kill the current instruction in
the decode/fetch stage. This is needed for when we mispredict a conditional branch. If the instruction
in the execute stage is a branch, and if the branch is taken, since we predicted not taken we insert a
NOP in the fetch/decode stage, thereby killing the false instruction.

Now we’re at the register file and immediate parsing blocks. For the register file, we make sure
the read enable signal is pulled high, then we parse the instruction that was fetched from the icache
to provide the two read addresses. This data is returned asynchronously and gets passed to a series
of MUX’s which decide which signals are passed on to the execute stage. The immediate parsing is
handled in a file called “imm parse.v”, and the output from those computations are fed into the Op1Sel
MUX along with register file data specified from the address d rs2 from the instruction. The logic
for the Op1Sel MUX is handled in a file called “op 1 sel mux.v” which uses the current instruction
to decide which signals should be moved through the pipeline. Below this, you will also notice a box
labeled “decoder” and another kill MUX. This is here to signify our bubble insertion/NOP logic. There
are cases when we’d need to keep the current instruction in the decode/fetch stage for additional cycles
(such as when there’s a WAR hazard). In the case of a load instruction immediately preceding an
instruction that uses the load’s destination register as an operand, we insert a NOP into the pipeline
here such that there’s a NOP between the two instructions. This is necessary due to the fact that we
don’t have a memory to execute bypass path (which could have been a good optimization to add).

Next, we see a series of three MUXs called XX bp sel. The selection logic for these MUXs is
contained in the file named “bp sel mux.v”. This file handles our bypass logic which is how we are
able to avoid almost all data hazards. These optimizations limit the need to insert bubbles in the
pipeline, thus decreasing our CPI. At a high level, the logic works as follows: it first checks the
instruction opcode in the decode stage to determine if it could have a data dependency. If so, it then
checks the operand values (rs1 and rs2) against all of the destination register (rd) values from the
instructions in the execute and decode stage. If there is a match, it sets the correct signal for each of
the three MUXs which is determined where the dependency was found, and which instructions they
are between.

At this point, most of the heavy lifting is done. The execute stage contains a few combinational logic
paths which feed data forward to the memory/writeback stage, or backwards again to the fetch/decode
stage. On the next clock cycle, the instruction that was previously in the fetch/decode stage, is now
at the output of the E INST REG 1 register (assuming a bubble wasn’t inserted and the pipeline isn’t
stalled). The ALU performs an operation on the values in registers E OP1 and E OP2. The operation
it performs is determined by the instruction that is executing in the execute stage, and the logic can
be found in the “ALU.v” and “ALUdec.v” files. The BranchCodeGen block compares the data in the
E OP1 and E RS2 registers and pulls the wire br out high if certain conditions are met. This signal
is used in the next PC logic to determine whether or not a conditional branch in the execute stage
resolved to taken or not taken. If the instruction in execute isn’t a branch, this signal is ignored. The
branch and target generation block above the ALU takes the value from E OP2 and adds it to the
instructions PC value for branches and jal instruction, or to the value in E OP1 for jump and link
instructions. The signal br or jump is then used to set the next PC value if the instruction is a taken

2



branch or a jump. The output of the ALU, branch target generator, and of the E PC (+4) register
are fed to a MUX. Depending on the instruction, this MUX selects the appropriate signal to send to
the memory stage.

Next, we look at the memory/writeback stage of the pipeline. If the instruction requires a dcache
write operation, then the M RS2 register will hold that data. The output of the M ALU OUT register
will be a memory address or writeback data. Let’s take a look at how the pipeline sets the appropriate
dcache signals. If the instruction is a load, we set read enable high, write enable low, and capture the
output. Since the cache only returns data on word boundaries, and since we need to handle read byte,
half-word, and full word load operations, we need to parse the output of the dcache before sending it
to the register file or to a bypass path. This is handled in a case statement. For store instructions,
we use a similar case statement. Depending on the lower two bits of dcache addr and on which type
of store it is, we set the write enable mask. Lastly, depending on the type of instruction, we select
either the M ALU OUT or m dmem out to send to the bypass path and as the data to the register
file. If the instruction is a branch, a store, or if the register destination is x0, the register file write
enable signal will be low; otherwise, a writeback will occur so it will be pulled high. That concludes a
high-level description of our pipeline, so now lets take a look at the cache.

1.2 Cache Design

Figure 2: Cache finite state machine (FSM) diagram.

Our cache is set up as an FSM with a controller. We implemented a direct mapped cache with write-
through and no write allocate policies. For the SRAM units, we used four of the sram22 256x32m4w8
macros. The cache line size is 64 bytes and words are 4 bytes. This results in a cache that has 64
lines. This configuration calls for the following TIO designations: the offset is the lowest 4 bits of the
cpu req addr, the index is the middle [9:4] bits of the address, and the tag is designated the remaining
bits ([29:10]). To handle the cache’s valid bits, we have a 64-bit register that gets initialized to 64’b0
upon reset. With our scheme, we only need to modify these bits when we pull up a new cache line
from memory on a cache read miss by setting the bit at the index of the cache line to 1. We also use
a 64x32 SRAM macro to store the tags that correspond to each cache line. Our cache can read and
write in two cycles, and there is a 4 cycle read miss penalty. At one point this was optimized to deliver
one cycle reads about 75

For the sake of readability and clarity, our cache has more states than are needed (some of them
could be combined into one). You will also notice some redundant variables, logic, and comments.
This is leftover from our debugging efforts and should be ignored (I’m hoping to come back and fix
our final bug later). The initial state that is set on reset is the INIT state. This state takes on most
of the logic needed to make the cache work.

3



Signals that are set continuously to handle control: cpu request ready is high when the FSM is in
the INIT state. The tag, index, and offset wires are parsed from cpu req addr as described above. The
sram line is 4 x index which is used to indicate the actual line in the SRAMs where the given cache
line starts. sram block indicates which of the 4 SRAM macros holds the specific word (or bytes) being
looked for on a read. The SRAM write masks always stay at 1111 (since we handle the masking of
data in the pipeline). For all four SRAMs, the data-in and address values are continuously assigned to
some offset of sram line and the mem resp data based on the current state. A mem data in local reg
is assigned based on where the word that needs to be written should fall in a 128-bit line (the other
bits are set to zero, and the mem write mask is used in order to maintain previous data). This is used
when writing to main memory. We assign a “hit” signal which checks whether the tag for the cache
line currently in the cache matches the tag of the address that we’re trying to read or write from.
It also checks that the cache line is valid. Additionally, we continuously assign our mem req valid
signal and pull it high whenever we need to read from main memory (when we have a read miss and
cpu req valid).

The INIT state: We first rest all relevant signals (i.e. write enable and valid signals). Then we
check if cpu req valid - if it’s not valid (the CPU is stalled due to the other cache), we set next state
= ‘INIT and end. If it is valid, we check for four scenarios: 1) read hit 2) read miss 3) write hit 4)
write miss. This is handled by if statements, and within each case, the relevant signals are set. On a
read hit, you set cpu req valid low and set the next state to ‘READ CACHE. In the READ CACHE
state, we only need to set cpu resp valid high and return to the init state. Like some of the other
states, READ CACHE acts as a delay state to give the SRAM time to read. As described above, the
specific SRAM that is being read from and the line in that SRAM are set continuously. On a read miss,
there’s a bit more to do. Firstly, you must check that mem req ready. Then, if the memory is ready
to receive a read, set the SRAM write enable signals high and set the next state to ‘MEM READ 1.
In MEM READ 1, we check that mem resp valid, keep the SRAM write enable signals held high,
write a valid bit to the correct index, set the metadata SRAM write enable signal high, then go to
MEM READ 2. These three mem read states are about the same. In the second one, however, you
need to pull the metadata write enable signal low again. This is because you already updated the tag
and valid bit after the first mem read state. These states act as delays while the data is read from the
memory into the SRAMs. On the final mem read state, you set the next state to MEM READ where
the write enable signals are pulled low, and the cpu resp valid signal is set high. On a write hit, we
write through to the SRAM and main memory. To do this, in INIT, we set the correct SRAM block
write enable signal high, set mem req rw high, set the mem data mask and data bits as described
earlier, then set the next state to CACHE MEM WRITE. The CACHE MEM WRITE state resets
the appropriate signals, pulls cpu rest valid high, and sets the next state to INIT. The write miss case
works in much the same way, except without writing to the SRAMs.

2 Simulation

Our pipeline and cache implementation together pass all but three of the instruction assembly tests.
Namely, it fails SW, SH, and SB. Because of this, we are unable to test our full design implementation
on benchmark tests. The cycles required for each assembly test is included in Table 1 below. Without
the cache implementation, however, we pass all of the assembly and benchmark tests. The cycles
required to complete each assembly and benchmark test is included in Tables 2 and 3 below.

3 Implementation

3.1 Synthesis

3.1.1 Timing

Our synthesized design passes setup and hold timing constraints with a maximum frequency of 55.5
MHz and critical path slack of 1.368 ns. The critical path is that of our data cache last SRAM
setup. The path travels from the pipeline control module’s memory register, M INST REG 1, to
the write-enable input of the data cache’s fourth SRAM module, sram4 we reg.

4



addi 483 lb 575 slti 473
add 987 lbu 575 sltiu 473
andi 383 lh 603 slt 971
and 1023 lhu 617 sltu 971
auipc 73 lui 85 srai 515
beq 625 lw 616 sra 1093
bge 687 ori 401 srli 503
bgeu 737 or 1029 srl 1077
blt 625 sb sub 967
bltu 679 sh sw
bne 629 simple 27 xori 405
jal 65 slli 481 xor 1027
jalr 217 sll 1047

Table 1: Reported cycles for assembly tests with cache.

addi 223 lb 253 slti 218
add 455 lbu 253 sltiu 218
andi 179 lh 265 slt 449
and 475 lhu 272 sltu 449
auipc 36 lui 40 srai 237
beq 292 lw 275 sra 502
bge 319 ori 186 srli 231
bgeu 344 or 478 srl 496
blt 292 sb 486 sub 447
bltu 317 sh 540 sw 545
bne 294 simple 15 xori 188
jal 32 slli 222 xor 477
jalr 102 sll 483

Table 2: Reported cycles for assembly tests without cache.

cachetest 3407778
final 7358
fib 6286
sum 22096966

replace 22096993

Table 3: Reported cycles for benchmark tests without cache.

In our diagram, this is a relatively short path. However, there is significant combinational logic
between when the M stage gets the next instruction and when the final SRAM write-enable is set to in
the INIT cache stage. First, the instruction gets parsed. Then it goes through a large case statement
to determine what the write-enable and read-enable signals and input data of the dcache should be.
Then, there is required logic to initiate the CPU’s ready-valid exchange, which is used to determine
whether the operation is a read or write in the cache before setting the SRAM write-enable signal.
Further, the fourth SRAM input signals are the last to be set.

3.2 Place and Route

3.2.1 Floorplan

Floorplanning requires an iterative process to balance design check violations while optimizing the
clock tree. The final floorplan, seen in Figure 3, was designed to give the CPU clear paths to both the
clock input (located on the bottom of the die), and the cache SRAM macros. The CPU was constrained
to be placed in a rectangular area, such that the smaller metadata marcos could be aligned on the
top, while the larger instruction and data cache SRAMs could be aligned on the left and right sides,

5



respectively.

Figure 3: Screenshots of die floorplan from Innovus.

6



3.2.2 Timing

The final design gave the clock tree visible in Figure 4, with a maximum frequency of 55.5 MHz.
Binned slack values and their respective occurrences are visualized in 5. The critical path slack is
0.003 ns, as specified by the Innovus timing report found in Figure 6.

Figure 4: Clock tree diagram.

Figure 5: Clock tree debugging for setup times (top) and hold time (bottom). The y-axis is number
of occurrences and the x-axis is delay in nanoseconds.

The hold clock tree debugging window helps us visualize how many paths are limiting the frequnecy.
There are a few critical paths with slack on the order of a few picoseconds that if resolved would allow
slightly better performance. Otherwise, there seems to be a bimodal distribution of paths around 19
ps and 24 ps which are likely contributed by the bulk of the memory and CPU logic.

7



Figure 6: Innovus timing report critical path output for setup (top) and hold (bottom).

The post-place-and-route critical path travels through the ALU, from the output of execute in-
struction register in the pipeline control module, E INST REG 1, to the ALU output register,
M ALUOut. This makes sense as the ALU contains much of the combinations logic required to op-
erate the CPU including all arithmetic instructions, while the registers also contribute delay. It should
be noted that this path is unlike the post-synthesis critical path. We think the paths differ because the
synthesis procedure is able to abstract wire delay, which may contribute larger portions of the delay
post-PAR. On the other hand, PAR is required to constrain the wires to fit the area provided, so many
additional turns and therefore more length may be needed, contributing the additional delay.

3.2.3 Area

The component using the most area our design the register file belonging to the CPU(Figure 7). This
file needs to be large to store all incoming instructions in the case of a live user, as well as support the
test suites.

4 Conclusion

4.1 Known Bugs

We still have a bug related to the cache. The pipeline passes all benchmark and assembly tests, but
the cache is failing the store assembly tests while passing the rest. We have spent countless hours
trying to fix this issue. To summarize. We are having trouble correctly timing everything. In a sense,
the cache itself is working perfectly fine (it is correctly reading and writing to and from memory and
the SRAM blocks). The issue arises due to some strange interaction between the icache, our pipeline,
and the dcache. Essentially, when a store instruction is followed by a load instruction, elements of
the several ready valid interfaces and stall signals interact and cause timing issues. One of two things
happens depending on some parameters that we modify: 1) there’s an infinite stall that occurs due
to the timing of the states in the dcache and icache when the dcache finishes executing a write or

8



Figure 7: Area by module output by the Innovus report area command.

2) an unavoidable stall causes the icache to pass on a garbage value which propagates through the
pipeline. It’s hard to explain without looking at the waveforms and code, and we know this sounds
pretty solvable, but we have tried many fixes to no avail. We have modified the states (added more
and set different signals in different ones), we have modified the logic for the dcache and icache read
and write enable signals in the pipeline (which set CPU req valid from Memory151), we have changed
the timing characteristics of the cache by moving signals from non-continuous to continuous and visa
versa, we have spent many hours stepping through every signal in the waveforms (for both caches, the
pipeline, and the external memory), we have stepped through working tests, gone to office hours, etc.
It is frustrating and deeply unsatisfying that we’ll be submitting the cache with this little bug, but we
have spent so much time on this single that we think my next step would have to be refactoring the
code to figure out what might be going wrong.

Update: Kevin H. recently pointed out some bugs. Some of them we have tinkered with in the
past, but there are a few things that need changing. We will request an extension on the lab’s eda
machines and hopefully sort this out.

4.2 Optimizations

We have two bypass paths that run from the execute and memory stages back to the fetch/decode
stage. This prevents the need to bubble our pipeline to wait for data hazards to resolve and lowers our
CPI. We mindfully designed our three stages such that the critical path is not too long. One example
of this is our placement of the branch target generator in the execute stage instead of on the longest
path of the fetch/decode stage. This was a trade off for a slightly higher CPI (due to the need to
bubble on jump instructions) in favor of a shorter critical path and higher clock frequency.

We implemented a pretty neat cache optimization that we later had to roll back to simplify the
design for debugging. Essentially, since we set the SRAM addresses continuously, we realized that as
long as we knew that the last requested address (for a read hit) was one less than the current address
and on the same line, we didn’t need to jump to the CACHE READ state since the output was already
ready. This decreased the memory delay for a series of 16 consecutive memory addresses (the first of
which was a miss) from 36 to 24.

9



4.3 Contributors

We want to give thanks to the supportive course staff of EECS 151 at UC Berkeley who wrote the test
scripts, and to the UC Berkeley EECS Department for allowing access to the tools needed to make
this project possible.

10


	Design
	Pipeline Design
	Cache Design

	Simulation
	Implementation
	Synthesis
	Timing

	Place and Route
	Floorplan
	Timing
	Area


	Conclusion
	Known Bugs
	Optimizations
	Contributors


