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Superconducting qubits provide one of the most promising platforms to realize a large-scale fault-
tolerant quantum computer. This project comprehensively reviews its fundamental building block,
namely the transmon qubit, and its underlying math and physics. In particular, we will start
with the basics of the transmon. We will then discuss the design, control, and readout schemes
of superconducting qubits in detail. Finally, building upon these fundamentals, we will cover the
challenges in state-of-the-art superconducting qubit research, such as the limiting factors of qubit
lifetime, and discuss approaches taken to overcome this problem.

I. CONTRIBUTION STATEMENT

Abstract, Section II, and and Section IV-C were writ-
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written by Elias. Section IV-D & E & F, Section V, and
Appendix were written by Kadircan.

II. INTRODUCTION

Superconducting LC resonators have equally spaced
energy spectra, which are not suitable to store quantum
information. With the introduction of a nonlinear in-
ductive element, the Josephson Junction, an anharmonic
quantum oscillator is achieved so that the two lowest en-
ergy states can be isolated as the computational sub-
space, making an artificial atom out of electrical circuits,
known as superconducting qubits. In particular, the
transmon qubit, the most popular type of superconduct-
ing qubit, has sufficiently large anharmonicity, while ex-
ponentially suppressing charge dispersion, enabling sig-
nificantly higher coherence. Thanks to the invention of
the transmon qubit, superconducting qubits are a corner-
stone technology of quantum computing, and continue
to grow in popularity. Since the first demonstration of
charge qubits in 1999 [1], quantum processors using su-
perconducting qubits have shown exemplary progress in
their coherence times, number of qubits, controllability,
and readout.

The motivation is due to the fact that although there
has been significant improvement in the qubit lifetime,
it has been more or less saturated at around a few hun-
dred microseconds recently. Quantum error correction
can protect quantum computations from physical errors
by encoding logical qubits into many physical qubits.
However, physical qubit error rates must be sufficiently
low to minimize resource overhead, and suppress errors.
As a result, improving qubit lifetime, which is impor-
tant to achieve low qubit gate error rates, is an active
challenge in the scientific community, since realizing a
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fault-tolerant large-scale quantum computer will be en-
abled with better physical qubits. In this project, we will
study the original transmon paper, review papers cover-
ing superconducting qubits and circuit quantum electro-
dynamics, and select papers from the literature on state-
of-the-art implementations of transmon qubits. In par-
ticular, we will analyze what approaches are taken in the
literature to improve superconducting qubit lifetimes for
large scale superconducting quantum processors. These
include the use of improved materials, advanced qubit
architectures, and microwave engineering.

III. BACKGROUND

This section covers literature review in transmon qubit
engineering. The intent of this section is to direct the
curious reader to external references which are key influ-
ences in the writing of this paper.

A. Superconductivity

Throughout this work, it is assumed that circuits are
operated at low enough temperatures such that the mate-
rials of which they are composed are in a superconduct-
ing phase. Superconductivity in this definition implies
that supercurrent flows without resistive dissipation of
energy. The physics of superconductivity is a very rich
subject, and further questions are being investigated as
for how different superconductive states affect the be-
havior of qubits. The specific superconductive behav-
ior assumed in this paper is based on Bardeen, Cooper,
and Schrieffer (BCS) theory, or Type 1 superconductiv-
ity. The curious reader should see the original paper by
Bardeen, Cooper, and Schrieffer [2], and the textbook [3].

B. The Transmon Qubit

Origins of the transmon qubit date to the 2007 pa-
per by Koch et al. titled Charge-insensitive qubit de-
sign derived from the Cooper pair box. Yale profes-
sors S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf
were the principal investigators behind this work which
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built upon their shared background in quantum infor-
mation theory [4], quantum coherence of single cooper
pairs [5], cavity quantum electrodynamics (cQED) [6],
and qubit noise spectrometers [7]. The paper defines
and highlights the importance of the Transmon Regime,
a ratio of the Josephson energy to the charging energy
(EJ/EC >> 1), required to suppress charge dispersion
exponentially, while reducing anharmonicity by a linear
power law.

C. Scaling Quantum Integrated Circuits; The
Xmon Geometry

The underlying motivation for studying qubits is the
development of large-scale, fault tolerant quantum com-
puters. This leads to many questions about designing
the qubit geometry, and in the case of superconducting
qubits, it introduces questions as to how we can incorpo-
rate qubits into modern day integrated circuits. Barends
et al. presented the ’Xmon’ qubit shown in Fig. 1 in
2013, paving a way for easily connected designs of su-
perconducting quantum processors [8]. The design in-
cluded a cross shaped qubit capacitor with coupling ca-
pacitances on each end, leading to control and readout
lines and a nearby Josephson Junction with a frequency
tunable SQUID (superconducting quantum interference
device) loop. This modular design, named after the cross
feature, is now a popular design used in the field.

FIG. 1. (a) Layout of ’Xmon’ qubit, with control line to
the left, readout line and resonator near the top, SQUID at
the bottom, and quantum bus for qubit-qubit coupling to the
right. Generally, low coupling is desired at the XY control
line to reduce energy leakage, whereas high coupling to the
readout line is desired for high fidelity phase reflection during
measurement. (b) Equivalent circuit diagram. (c) SQUID
loop with Josephson Junctions. Figure taken from [8].

D. High Fidelity Gates & Measurements

In 2013, Gustavsson et al. used a novel approach to
measure superconducitng qubit control distortions, effec-
tively reducing the average error per gate by 37 per cent,
achieving single gate fidelities as high as 99.8 per cent
[9]. In April of 2014, Barends et al. claimed that su-
perconducting quantum processors were on the brink of
the fault-tolerance threshold for surface code error cor-
rection, reporting an average single-qubit gate fidelity of
99.92 per cent and a two-qubit gate fidelity of up to 99.4
per cent [10]. The methods for achieving these fidelities
are similar to those covered in this report however the
origins of this technology may be found in the aforemen-
tioned papers.
A standard readout scheme is also covered in this re-

port. To measure the state of a superconducting qubit,
a readout pulse is applied through an input line with
attenuators that reduce the noise from room tempera-
ture instruments to single microwave photon level. The
pulse is directed via a microwave circulator, reflected
with a phase shift, or frequency shift in the readout res-
onator based on the state of the qubit, before passing
through isolators to protect against output chain noise.
The pulse is amplified at the 4 K stage and again at
room temperature before being digitized. Improvements
have been made in last 15 years with the desire of quan-
tum computation which employs feedback and dynamic
state-dependent operations [11]. Such improvements in-
clude the addition of a Purcell filter in 2010 which re-
duces relaxation via spontaneous emission [12], a Joseph-
son Parametric Circuit first demonstrated in 2013 used
to amplify the reflected signal with less than 1.5 photons
of noise [13], and FPGA control electronics which enable
low-latency signal processing in hardware.

IV. THEORY

A. Quantum LC Resonator

It is natural to begin this paper with a review of the
LC oscillator circuit, on which superconducting qubit ar-
chitectures are based on. In terms of the charge on the
capacitor q, and the current through the inductor I

L =
1

2
LI2 − 1

2

q2

C
=

1

2
Lq̇2 − 1

2

q2

C
(1)

which yielded the Euler-Lagrange equation q̈ = −Ω2q
where we define the natural oscillation frequency to be

Ω =
1√
LC

(2)

The conjugate momentum to the charge coordinate is the
flux through the inductor.

Φ =
δL
δq̇

= LI (3)
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∴ H = Φq − L =
Φ2

2L
+
q2

2C
(4)

Hamilton’s equations of motion give the current
through the inductor and voltage at the node connect-
ing the inductor and capacitor

q̇ =
∂H

∂Φ
=

Φ

L
= I (5)

Φ̇ = −∂H
∂q

= − q

C
= V (6)

In their quantum operator form, charge and flux obey
the canonical commutation relation [Φ̂, q̂] = −iℏ. Thus,
we can define annihilation and creation operators

α̂ = +i
Φ̂√

2Lℏω0

+
Q̂√

2Cℏω0

(7)

α̂† = −i Φ̂√
2Lℏω0

+
Q̂√

2Cℏω0

(8)

∴ H =
ℏω0

2
(α̂†α̂+ α̂α̂†) = ℏω0(α̂

†α̂+
1

2
) (9)

Thus far, we have successfully derived the Hamiltonian
for the LC resonator, which resembles the quantum har-
monic oscillator with q as our coordinate of choice and
Φ as its conjugate momentum. However, in the context
of the Josephson junction, our LC resonator will have a
non-linear inductance, so it will be more convenient to
choose the flux as the coordinate. Performing a change
of basis, we have

L =
1

2
CΦ̇2 − 1

2

Φ2

L
(10)

It’s important to remember that in this new basis we
must maintain the commutation relation between our co-
ordinate Φ̂ and its conjugate momentum, denoted Q̂. As
we have chosen to keep Φ̂ consistent, we must let Q̂ = −q̂,
but this only results in a couple negations during the
derivation, and no meaningful difference in the equation
and of course not in the underlying physics.

Using a similar procedure as before, we have

H = QΦ̇− L =
Q2

2C
+

Φ2

2L
(11)

Φ̇ = +
∂H

∂Q
=
Q

C
= V (12)

Q̇ = −∂H
∂Φ

= −Φ

L
= −I (13)

as we expect.
The new annihilation and creation operators become

α̂ = +i
Q̂√

2Cℏω0

+
Φ̂√

2Lℏω0

(14)

α̂† = −i Q̂√
2Cℏω0

+
Φ̂√

2Lℏω0

(15)

such that the Hamiltonian in terms of these operators
remains Eq (9).
Furthermore, we can express the charge and flux oper-

ators in terms of the creation and annihilation operators
in an elegant way which incorporates the characteristic
impedance, Z, of the oscillator:

Q̂ = −iQZPF (α̂− α̂†) (16)

Φ̂ = −iΦZPF (α̂+ α̂†) (17)

where

QZPF =

√
CℏΩ
2

=

√
ℏ
2Z

(18)

ΦZPF =

√
LℏΩ
2

=

√
ℏZ
2

(19)

for Z =
√

L
C as in the classical LC oscillator.

We have chosen to define QZPF and ΦZPF in such a
way that they represent the quantum ground state
uncertainties in charge and flux. Naturally, they obey
the usual uncertainty principle

QZPFΦZPF =
ℏ
2

(20)

Hereafter, we will use the dimensionless characteristic
impedance z = Z × 2G0, instead of Z. G0 is the con-

ductance quantum, G0 = 2e2

h ≈ 7.74809 × 10−5 S which
describes the conductance of two quantum channels (one
for spin up and one for spin down) when the probability
for transmitting an electron that enters the channel is
unity, i.e. during ballistic transport or superconductive
states.
We see that

QZPF = (2e)

√
1

4πz
(21)

ΦZPF = Φ0

√
z

4π
(22)

where

Φ0 ≡ h

2e
(23)

is the superconducting flux quantum; h and e are the
Planck constant and electron charge, respectively.
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B. Josephson Junctions

A single Josephson Junction, shown in Fig. 2, is able
to coherently transfer Cooper pairs from one supercon-
ducting island to another via quantum tunneling. This
simplified description is known as the Cooper Pair Box
(CPB), and is a foundational example to understand the
behavior of Josephson Junctions in the context of super-
conducting qubits.

Consider a Type 1 superconductor (one that follows
BCS theory, such as cryogenically cooled Al). In this
phase, electrons of spin-up and spin-down join together
to form Cooper pairs of lower ground state. This ground
state is unique, non-degenerate, and separated from the
excited states by a gap of 2∆, where ∆ is the energy
required to break a Cooper pair, on the order of several
kelvin (multiplied by the Boltzmann constant).

FIG. 2. Common architecture of Josephson Junction. Super-
conducting aluminum electrodes are separated by a thin layer
of insulating aluminum oxide, forming a tunnel junction.

Consider two superconducting islands separated by a
thin insulating barrier. Assume that the total number of
electron pairs in a system is fixed to some N = N1 +N2.
Ignoring the Coulomb energy of the newly formed capac-
itor, the total number of pairs no longer uniquely defines
the quantum state. There is now a family of degenerate
ground states which we will denote as

|m⟩ = |N1 −m,N2 +m⟩ (24)

Now consider the resulting Hamiltonian

HT = −1

2
EJ

∑
m

(|m⟩ ⟨m+ 1|+ |m+ 1⟩ ⟨m|) (25)

where EJ is the Josephson coupling energy, a measure
of the ability of Cooper pairs to tunnel through the
barrier. The Josephson energy is approximated by the
Ambegaokar-Baratoff relation

EJ = G0GN∆ (26)

where GN = 1
RN

is the normal state conductance which
is calculated using Fermi’s Golden Rule for the tunneling
rate.

The Hamiltonian HT connects a set of discrete states
resulting in coherent tunneling, as mentioned at the be-
ginning of this section. The solution to the Schrödinger
equation for such a Hamiltonian is found via degenerate
perturbation theory to be

|φ⟩ =
∑
m

eimφ |m⟩ (27)

with eigenvalues given by

HT |φ⟩ = −EJ cosφ |φ⟩ . (28)

The current flowing through the junction is given by
calculating the group velocity of such a wave packet

vg(φ) =
1

ℏ
∂

∂φ
[−EJ cosφ] (29)

∴ I(φ) = −2evg(φ) =
2e

ℏ
EJ sinφ (30)

Let the critical current, above which will result in ohmic
behavior, be denoted

Ic =
2e

ℏ
EJ . (31)

In the case of a voltage applied across the junction, we
add a potential term

U = −(2e)V n̂ (32)

to the Hamiltonian, where

n̂ ≡
∑
m

|m⟩m ⟨m| (33)

be the operator which gives the number of charges cross-
ing the junction.
The Hamiltonian with this new term is given by

H = −EJ cosφ− 2eV n̂ (34)

C. The Transmon Regime

The previous section purposefully ignored the
Coulomb interaction resulting from the capacitance of
the Josephson Junction. When we shunt the Junction
with a large capacitor, we can define the charging energy
associated with transfer of a single electron

EC =
e2

2CΣ
(35)

where CΣ = CJ + Cg is the total capacitance between
the Josephson Junction CJ and the gate capacitance Cg

(See Fig. 5). Transfer of a Cooper pair requires four
times this energy, so the operator is given by

Û = 4EC(n̂− ng)
2 (36)

for gate charge

ng ≡ −CgV

2e
(37)

which represents the effect of an external electric field
that breaks degeneracy. As a continuous variable, the
fluctuations of ng can be considered a source of noise.
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Incorporating these terms into the Hamiltonian of the
Josephson Junction alone, we arrive at

H = 4EC(n̂− ng)
2 − EJ cos φ̂ (38)

The reader should closely examine this Hamiltonian side-
by-side with that of a rigid rotor (See Givin’s notes in [14]
for more detail). Noticing the similarity, we can make a
powerful analogy resulting in an interesting approxima-
tion. In the case of small amplitudes, the rigid rotor can
be closely approximated by the harmonic oscillator, but
in the limit of large amplitudes, its behavior diverges.
Similarly, Eq (38) exhibits the behavior analgous to the
harmonic oscilator when the cosine term is expanded to
second order, a valid approximation only if EJ >> EC .
We call the ratio of EJ/EC >> 1, in which this is a valid
approximation, the transmon regime. The Hamilto-
nian in this case is given by

H ≈ 4EC n̂
2 +

1

2
EJ φ̂

2 (39)

Further, we can connect this Hamiltonian directly to
that of the LC resonator studied in subsection A. Notice
that in the case of the quantum LC resonator, the phase
angle φ may be expressed as

φ =
2e

ℏ
Φ = 2π

Φ

Φ0
(40)

For each increase of the flux by one flux quantum, the
superconducting phase experiences a full rotation. This
leads to the Lagrangian for the CPB

L =
1

2
CΦ̇2 + EJ cos

(
2π

Φ

Φ0

)
(41)

Expanding the cosine term about Φ = 0 to lowest order
gives

L =
1

2
CΦ̇2 − 1

2LJ
Φ2 (42)

where the effective inductance of the Josephson junction
is given by

LJ = (
ℏ
2e

)2
1

EJ
(43)

In this approximation, the resonant frequency of the CPB
is

ΩJ ≡ 1√
LJC

=
1

ℏ
√
8EJEC (44)

Leaving the harmonic approximation, we see that for
general flux Φ, we can define the differential inductance
as

L(Φ) ≡ (
d2H

dΦ2
)−1 = (EJ(

2π

Φ0
)2 cos

(
2π

Φ

Φ0

)
)−1 (45)

thus, the Josephson junction is a non-linear induc-
tor.
To further see the impact of the transmon regime, we

make another analogy, this time to the band structure of
a one-dimensional solid with a cosine potential in which
the offset charge defines the Bloch wavevector − 1

2 ≤ k ≤
1
2 for wavefunction

Ψmk(φ) = eikφψm(φ). (46)

In this picture, representative of near-neighbor hopping
in a tight-binding model, the eigenvalues for such eigen-
vector are [15]

Em(ng) ≈ Em + ϵm cos(2πng) (47)

where ϵm defines the ’charge-dispersion’. In the WKB
approximation of this model, the charge dispersion is ex-
plicitly given by [15]

ϵm ≈ (−1)mEC
24m+5

m!
(
EJ

2EC
)

m
2 + 3

4 e−
√

8EJ/EC (48)

Charge dispersion measures the sensitivity of the energy
levels to the offset charge. We see that it has an in-
verse exponential dependence on

√
EJ/EC . Going to the

transmon regime, large EJ/EC , makes the qubit highly
insensitive to low-frequency charge noise, dramatically
improving dephasing time. This insensitivity can be seen
in Fig. 3 where subfigure (d) corresponds to the trans-
mon regime with EJ/EC = 50. We have also numeri-
cally simulated the first 4 energy levels of transmon for
EJ/EC = 5 and EJ/EC = 50 as a function of offset
charge ng, which can be seen in the Appendix A, using
sc-Qubits Python package [16].
Furthermore, we define the anharmonicity as α ≡

E12 − E01 where E12 = E2 − E1 and E01 = E1 − E0.
Recall the Hamiltonian H = 4EC(n̂ − ng)

2 − EJ cos φ̂.
We can expand the cosine term around φ = 0 up to the
fourth order cosφ ≈ 1 − 1

2!φ
2 + 1

4!φ
4. Then, the fourth

order term, which is the perturbation to the harmonic os-
cillator, is V = −EJ

4! φ̂
4. Substituting φ̂ = φZPF (â+ â†)

where φZPF = ( 2EC

EJ
)1/4, one obtains V = −EC

12 (â+ â†)4

[17]. We can now perform calculations with first-order
perturbation theory to get the corrections for the energy
levels.

E
(1)
j = ⟨j|V |j⟩ = −EC

12
⟨j| (â+ â†)4 |j⟩ (49)

where |j⟩ is the harmonic oscillator eigenstates with no
perturbation. Straightforward algebra yields

E
(1)
j = −EC

12
(6j2 + 6j + 3) (50)

As a result, the eigenenergies can be written as

Ej = ℏΩ(j +
1

2
)− EJ − EC

12
(6j2 + 6j + 3) (51)
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FIG. 3. Band diagram of ground, first, and second excited
states versus charge offset. Notably, increasing EJ/EC flat-
tens the bands, implying a reduction in sensitivity to charge
dispersion. Figure taken from [15].

where Ω =
√
8EJEC

ℏ . We can calculate E12 = E2 − E1 =
ℏΩ − 2EC and E01 = E1 − E0 = ℏΩ − EC . Then, the
anharmonicity can be calculated as

α = E12 − E01 = −EC (52)

Moreover, the relative anharmonicity can be written

αr ≡ α/E01 (53)

where E01 = ℏΩ =
√
8EJEC . Finally,

αr = −EC/
√
8EJEC = −(8EJ/EC)

−1/2 (54)

which is a function of the ratio EJ/EC .
Note that anharmonicity depends on EJ/EC with a

weak power law such that we still have sufficiently large
anharmonicity in the transmon regime, while the sensi-
tivity to charge noise is exponentially suppressed. In this
regime, anharmonicity can easily be kept above an ade-
quate level of 100-200 MHz to apply fast control pulses.

D. Qubit Control

Let us derive the formalism for the superconducting
qubit drive with capacitive coupling, whose circuit dia-
gram is shown in Fig. 4. Let us start by writing down
the Lagrangian for the circuit diagram as

L =
1

2
CΦ̇2 − 1

2L
Φ2 +

1

2
Cd(Φ̇− Vd)

2 (55)

where we define the flux as

Φ(t) =

∫ t

0

V (τ) dτ (56)

FIG. 4. Circuit diagram of capacitive coupling of a microwave
drive line to a superconducting qubit. Figure taken from [18].

For the moment, if we consider Vd = 0, we see that the
conjugate momentum is

∂L
∂Φ̇

= (C + Cd)Φ̇ = Q (57)

which is the total charge at the capacitors. Here, we
see the contribution from the Cd capacitor on top of the
qubit capacitor. Then, upon Legendre transformation,
the Hamiltonian without the drive can be written as

H =
Q2

2(C + Cd)
+

Φ2

2L
(58)

Now, let us revisit the initial Lagrangian we wrote L =
1
2CΦ̇

2− 1
2LΦ

2+ 1
2Cd(Φ̇−Vd)2. We identify the drive con-

tribution as Ld = −CdΦ̇Vd(t), dropping the term
1
2CdV

2
d ,

since it is only a constant energy shift term that does
not include any parameter dependency. Then, the drive
Hamiltonian is

Hd = CdΦ̇Vd =
Q

1 + C/Cd
Vd(t) (59)

We can now write down the full Hamiltonian including
the drive term

H =
Q2

2(C + Cd)
+

Φ2

2L
+

Vd(t)

1 + C/Cd
Q (60)

We can reexpress the charge Q in the language of creation
and annihilation operations

Q = −iQZPF (â− â†) (61)

where QZPF =
√

ℏ
2Z , Z =

√
L

C+Cd
. Plugging these in,

we obtain the expression for the drive Hamiltonian as

Hd = −i Cd

C + Cd
Vd(t)QZPF (â− â†) (62)

and if we add the qubit, we obtain the full Hamiltonian
as

H = −ωq

2
σz +ΩVd(t)σy (63)

where Ω = Cd

C+Cd
QZPF , and ωq = (E1 − E0)/ℏ. Note

that this Hamiltonian is time-dependent. We shall move
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to the rotating frame to get rid of this time-dependency
via the unitary transformation

eiH0t = e−i
ωq
2 tσz (64)

Then, the drive Hamiltonian in the rotating frame (rf) is

Hd,rf = ΩVd(t)(cos(ωqt)σy − sin(ωqt)σx) (65)

where σx and σy are Pauli X and Y matrices. Let us
consider a drive voltage in the form Vd(t) = V0v(t) where
v(t) = s(t) sin(ωdt+ ϕ), or equivalently

v(t) = s(t)(cos(ϕ) sin(ωdt) + sin(ϕ) cos(ωdt)) (66)

where s(t) is a dimensionless envelope function. Let I ≡
cos(ϕ), and Q ≡ sin(ϕ), which are the in-phase, and out-
of-phase components, respectively. We can then write
the Hamiltonian as

Hd,rf = ΩV0s(t)(I sin(ωdt)−Q cos(ωdt))

× (cos(ωqt)σy − sin(ωqt)σx) (67)

Upon trigonometrical manipulation, and dropping fast
oscillating terms, known as rotating wave approximation,
we obtain

Hd,rf =
1

2
ΩV0s(t)[(−I cos(δωt) +Q sin(δωt))σx

+ (I sin(δωt)−Q cos(δωt))σy] (68)

where δω = ωq − ωd is the detuning. If we drive on
resonance (δω = 0), drive Hamiltonian reduces down to

Hd,rf = −Ω

2
V0s(t)(Iσx +Qσy) (69)

where we see that in-phase and out-of-phase components
perform rotations around x- and y-axes on the Bloch
Sphere, respectively. To exemplify, we shall take a look at
the case with in-phase component (ϕ = 0). The unitary
operator for this operation is

Uϕ=0
d,rf (t) = e

i
2ΩV0(

∫ t
0
s(t′)dt′)σx (70)

where we see that pulse envelope function is integrated
over time. We can write the rotation angle as

Θ(t) = −ΩV0

∫ t

0

s(t′)dt′ (71)

To apply a π-pulse on the x-axis, one needs to achieve
Θ(t) = π. In summary, to perform rotations on the Bloch
Sphere, one needs to send coherent microwave pulses that
are near qubit transition frequency [14].

E. Circuit Quantum Electrodynamics

Circuit quantum electrodynamics (circuit QED) is a
formalism that is analogous to cavity quantum electro-
dynamics. Circuit QED treats the superconducting qubit

as an artificial atom with two energy levels, and the qubit
is coupled to a linear microwave LC resonator which is
the cavity in the context of cavity QED. Let us now de-
rive the Jaynes-Cummings Hamiltonian, from which we
shall derive the formalism for the dispersive readout of
superconducting qubits.
The circuit model for a transmon qubit that is coupled

to an LC resonator is shown in Fig. 5. The Hamiltonian

FIG. 5. Circuit model of a capacitively coupled qubit-
resonator system. Figure taken from [14].

for the qubit part is

H1 =
Q̂2

1

2C1Σ
− EJ cos

2e

ℏ
Φ̂1 (72)

where C1Σ ≡ CJ + C2s, and
1

C2s
≡ 1

Cg
+ 1

CB
. The linear

resonator is simply a quantum harmonic oscillator with
Hamiltonian

H2 =
Q̂2

2

2C2Σ
+

Φ̂2
2

2LB
(73)

where C2Σ ≡ CB + C1s, and
1

C1s
≡ 1

Cg
+ 1

CJ
. Moreover,

the interaction of the qubit and the resonator is captured
in the coupling Hamiltonian

H12 =
β

C2Σ
Q̂1Q̂2 (74)

where β ≡ Cg

Cg+CJ
is calculated in [14] through electro-

static analysis. Q̂1Q̂2 indicates that coupled quantities
are charges in nodes 1 and 2. The total Hamiltonian is

H = H1 +H2 +H12 (75)

We can calculate the bare qubit eigenstates which are
decoupled from the resonator using the qubit Hamilto-
nian only, H1. The eigenstates are denoted as |j⟩, and
they can be calculated through the eigenvalue equation

H1 |j⟩ = ϵj |j⟩ (76)

We can write the matrix elements of the charge operator
as Q1,jk = ⟨j| Q̂1 |k⟩. Then, the charge operator at node
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1 is

Q̂1 =
∑
j,k

Q1,jk |j⟩ ⟨k| (77)

Furthermore, the LC resonator Hamiltonian upon quan-
tization is written as

H2 = ℏωrâ
†â (78)

where ωr = 1/
√
LBC2Σ. Writing the charge operator at

node 2 in terms of creation and annihilation operators,
we obtain

Q̂2 = −iQ2ZPF (â− â†) (79)

where Q2ZPF =
√

CBℏωr

2 . Upon plugging in all these ex-

pressions, the qubit-resonator coupling Hamiltonian be-
comes

H12 = −i β

C2Σ
Q2ZPF

∑
j,k

Q1,jk |j⟩ ⟨k| (â− â†) (80)

Finally, we can then write the total Hamiltonian as

H = ℏωrâ
†â+

∑
k

ϵk |k⟩ ⟨k|

− i
β

C2Σ
Q2ZPF

∑
j,k

Q1,jk |j⟩ ⟨k| (â− â†) (81)

Recall that transmon qubit is an anharmonic oscillator,
but it is actually only weakly anharmonic. If were to
assume that the qubit is sufficiently anharmonic, which
is indeed an appropriate assumption as long as the qubit
drive is properly calibrated, the qubit remains in the two-
level computational subspace all the time. Hence, we
can limit our analysis to two levels, and use the Pauli Z
operator. With that, one can write

|0⟩ ⟨0| = 1− σz
2

(82)

Further, for the raising and lowering operators of the
qubit, we have

|1⟩ ⟨0| = σ+ (83)

|0⟩ ⟨1| = σ− (84)

|1⟩ ⟨1| = 1 + σz
2

(85)

Then, the total Hamiltonian consisting of the two-level
artificial atom, linear resonator, and their coupling be-
comes

H = ℏωrâ
†â+

ℏω01

2
σz− i(â− â†)ℏ(g01σ−+g10σ+) (86)

where the coupling strength is

gij ≡
1

ℏ
[βQ2ZPFQ1,jk/(C2Σ)] (87)

and we can assume that the static terms are zero, and
only the transition elements are nonzero, g00 = g11 = 0.
This is because the qubit has charge parity symmetry,
H(Q̂) = H(−Q̂), which leads to Q00 = ⟨0| Q̂ |0⟩ = 0

and Q11 = ⟨1| Q̂ |1⟩ = 0. In other words, static dipole
moments vanishes [14], whereas g01 = g10 = g. We can
then write the Hamiltonian to be

H = ℏωrâ
†â+

ℏω01

2
σz − iℏg(â− â†)(σ+ + σ−) (88)

We can eliminate the energy non-conserving terms
through the secular approximation (rotating wave ap-
proximation). As a result, we have

H = ℏωrâ
†â+

ℏω01

2
σz − iℏg(âσ+ − â†σ−) (89)

With the unitary transformation U = ei
π
4 σz such that

Uσ+U
† = iσ+, and Uσ−U

† = −iσ− [14],

H = ℏωrâ
†â+

ℏω01

2
σz + ℏg(âσ+ + â†σ−) (90)

which is indeed the Jaynes-Cummings Hamiltonian
which lies at the heart of circuit QED [19, 20].

F. Qubit Readout

Having derived the Jaynes-Cummings Hamiltonian,
we now have the machinery to calculate the dispersive
regime Hamiltonian which enables the most popular way
of reading out superconducting qubit state. Dispersive
regime is the parameter regime with ∆ ≫ g where ∆
is the detuning between the resonator and the qubit,
(∆ ≡ ω01 − ωr). In this way, qubit state can be read out
in a non-destructive manner, meaning the qubit state re-
mains the same after the measurement. It is important
to note that the interaction ℏg(âσ++â†σ−) preserves the
number of excitations, since we see that either the qubit
is excited and a microwave photon is annihilated in the
resonator, or the qubit is deexcited and a microwave pho-
ton is created in the resonator, which means the states
|g, n⟩ and |e, n− 1⟩ couple only. In this notation, g and
e refer to the ground and excited states of the qubit, and
n refers to the number of microwave photons in the res-
onator. We further note that the coupling strength for
the n-excitation manifold is

⟨e, n− 1| g(â |e⟩ ⟨g|+ â† |g⟩ ⟨e|) |g, n⟩ = g
√
n (91)

Then, we can diagonalize the Hamiltonian, and calculate
the eigenenergies at the n-excitation manifold. In the
dispersive limit where ∆ ≫ g, one obtains an expression
for the eigenenergies as

En± = nℏωr ± ℏ
∆

2
± ℏ

g2

∆
n (92)
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As a natural result, we can then write the effective Hamil-
tonian in the dispersive regime as

Hdispersive = ℏωrâ
†â+

1

2
ℏ∆σz + ℏ

g2

∆
â†âσz (93)

Another equivalent way to write this dispersive regime
Hamiltonian is

Hdispersive = ℏ
(
ωr +

g2

∆
σz

)
â†â+

1

2
ℏ∆σz (94)

where we see that there is a shift in the resonator fre-
quency (± g2

∆ ) depending on the qubit state which is
called the dispersive shift [21]. Here, we see that one can
measure the qubit state by simply measuring the cavity
frequency, which is a quantum nondemolition measure-
ment [20, 22]. Vector Network Analyzer measurement
will simply show two distinct spectra depending on the
qubit state, which can be seen in Fig. 6 (a). We can also
infer the qubit state from the phase response, as shown
in Fig. 6 (b).

FIG. 6. Qubit state dependent shift in the readout resonator
resonance frequency and phase. Figure taken from [18].

The final remark to note regarding the dispersive read-
out of transmon qubits in the circuit QED picture is that
there is a correction to the dispersive shift term we de-

rived (± g2

∆ ) for a two-level artifical atom coupled to a lin-
ear resonator. This is because the transmon qubit is only
weakly anharmonic. Thus, one has to take the higher ex-
cited state into account, and calculate the correction to
the dispersive shift. One ends up with the expression [23]

χ = −g
2

∆

α

∆− α
(95)

where α is the anharmonicity. Note that one recovers
g2/∆ in the limit of large anharmonicity.

In summary, we can perform the superconducting
qubit state readout in circuit QED with microwave input
near the cavity frequency through qubit state dependent
dispersive shift [14].

V. CHALLENGES IN STATE-OF-THE-ART
SUPERCONDUCTING QUBIT RESEARCH

There has been extensive study to characterize and
mitigate the loss and noise problem in superconducting
qubits. To name several decay channels, there are spon-
taneous emission, dielectric losses [24], quasiparticle tun-
neling due to broken Cooper pairs [25, 26], and coupling
to spurious modes. These decay channels lower the T1 by
allowing the qubit to relax its energy into its environment
[15].
On the other hand, dephasing time (T2) is affected

by the 1/f noise [27]. For instance, charge noise [28],
flux noise [29], critical current noise [30] are dephasing
channels for the superconducting qubit.
Here, we shall focus on the limiting factor for super-

conducting qubit lifetime, which are the two-level system
defects.

A. Limiting Factor For Superconducting Qubit
Lifetime

Although there has been significant improvement in
the superconducting qubit lifetime over the years, it has
been more or less stuck at around a few hundred mi-
croseconds recently [27]. This limitation has been mainly
attributed to the two-level system defects (TLS) that
emerge from deviation from the crystalline order. Since
superconducting qubits are made with conventional mi-
cro and nanofabrication technologies, there are imperfect
material interfaces, photoresists residuals due to lithog-
raphy steps, structural damage due to etch steps, and
surface oxides etc., all of which lead to amorphous layers
with dangling bonds, hydrogen rotors, collective motion
of atoms, etc. where TLSs reside. Microscopic nature of
TLSs is not very well understood at the moment. How-
ever, there is a phenomenological model, known as the
Standard Tunneling Model, where there is a double po-
tential well modelling the two eigenstates of TLSs, which
is shown in Fig. 7. In this model, TLSs can tunnel from

FIG. 7. Standard Tunneling Model with double-well poten-
tial. Figure taken from [31].

one configuration to the other with a tunneling energy of
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∆0, and the two levels are separated with an asymmetry
energy ε. The Hamiltonian for a TLS can be written as

HTLS =
1

2

(
ε ∆0

∆0 −ε

)
(96)

Diagonalizing HTLS , and calculating the eigenenergies
give a TLS resonance of E =

√
ε2 +∆2

0. Then, we can
write the Hamiltonian in the basis of eigenstates as

HTLS =
1

2
Eσz (97)

Therefore, these defects can resonantly absorb energy,
and give rise to dielectric loss. Another remark to note
is that the asymmetry energy ε depends on the environ-
mental strain and electric fields, since TLSs have acoustic
and electric dipole moment, which allow them to couple
to strain and electric field in their environment, respec-
tively. Asymmetry energy can be written as

ε = 2γ⃗ · S⃗ + 2p⃗ · E⃗ + ε0 (98)

where γ⃗, p⃗, ε0 are acoustic dipole, also known as defor-
mation potential, electric dipole, and a static asymmetry
term, respectively.

As a result of the coupling mechanism just mentioned
above, TLSs lead to enhanced decay rate for the super-
conducting qubits, or equivalently reduced lifetime. In
Fig. 8 (a), qubit frequency as a function of external mag-
netic flux is shown. Fig. 8 (b) shows the decay of the
qubit in time domain. More importantly, we see in Fig. 8
(c) that when the qubit is tuned to be near resonance
with an individual TLS, the superconducting qubit expe-
riences enhanced decay rate. Each peak in the spectrum
corresponds to a random TLS with different resonance
frequency.

B. Efforts In The Literature

Having discussed the TLS-induced enhanced decay
rate for superconducting qubits in the previous subsec-
tion, we shall now review what methods have been pro-
posed in the literature to overcome this problem. To
begin with, one way to remove TLS losses is removing
lossy interfaces away from the high electric field regions
[33, 34]. The idea behind this is that one can reduce
the participation of lossy interfaces, such as substrate-
metal and substrate-vacuum interfaces. On the other
hand, it is known that metal-vacuum interface is less
lossy. If one engineers a microwave circuit design with
smaller portion of the electric field interacting with the
lossy interfaces, TLS-induced loss decreases. This is be-
cause the coupling strength of TLSs is proportional to
the electric dipole moment and electric field strength.
Here, electric field strength is reduced at lossy interfaces
by careful microwave engineering so that the coupling
is weaker; hence, loss is lower. A similar idea is etch-
ing deep trenches into the substrate in fabrication so

FIG. 8. (a) Qubit spectroscopy by frequency tuning through
external magnetic flux applied. (b) Time-domain spec-
troscopy showing the decay of qubit population. (c) Qubit
relaxation rate spectrum. Figure taken from [32].

that lossy interfaces are pushed far away from the high
electric field regions [35]. Furthermore, there is effort in
using 2D materials as capacitor dielectric, as they have
very little TLS density, enabling higher quality factor
superconducting circuits [36]. Since TLSs emerge from
deviations from the crystalline order, material improve-
ments enable less loss through smaller TLS density. In
particular, adoption of crystalline dielectrics instead of
amorphous layers improves the lifetime of superconduct-
ing qubits [37]. Moreover, surface passivation and treat-
ment as a post-fabrication step lower the TLS-induced
loss. In [38], nitrogen surface passivation was performed,
achieving lower loss.

One remarkable achievement that has recently been
shown is that superconducting qubits whose microwave
circuits are made from tantalum perform better with a
T1 time exceeding 0.3 ms [39]. This is because the na-
tive oxide of tantalum, TaOx, is less lossy, compared with
commonly used superconductors, such as aluminum and
niobium, indicating the state-of-the-art superconducting
qubit research benefits from materials science and surface
characterization significantly. In addition, thorough sur-
face cleaning and characterizing surface level structure
help improve the superconducting qubit lifetime and mi-
crowave resonator quality factors [40].

Another approach is studying novel qubit architec-
tures with larger anharmonicity and noise protection.
While larger anharmonicity enables faster control pulses,
noise protection can improve the lifetime and coherence.
To exemplify, capacitively shunted flux qubit [41] and
fluxonium qubits [42] can achieve higher anharmonicity,
whereas 0− π qubit is topologically noise protected [43].
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Appendix A: Transmon Energy Level Simulation
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FIG. 9. Lowest 4 energy levels calculated by numerical anal-
ysis with varying offset charge ng. Upper and lower fig-
ures depict the parameter regimes with EJ/EC = 5 and
EJ/EC = 50, respectively. Figures are generated using sc-
Qubits Python package [16].
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