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Abstract

Despite the many closed-form solutions known to physicists, the set of problems

without such a solution is much larger – the physical world may only be approximated

by the equations we are familiar with. To study the behavior of real systems, we turn to

the fields of Non-Linear Dynamics and Chaos. In this report, we introduce foundational

theories of these fields, such as bifurcation, flows, and fractals, and use these concepts to

study non-linear systems. We analyze an LC oscillator circuit containing a non-linear

PN-junction, and other digitally-encoded non-linear systems, such as a ball bouncing

on an oscillating table.



1 Introduction

To understand non-linearity, recall the premise of a linear system: if we input a function

f(t), the output is C f(t), where C may be a complex constant. For example, the 1D simple

harmonic oscillator has the coordinate x(t) = sin(ωt + ϕ), which is non-linear in time, but

inputting this behavior into the system, say driving it at frequency ω, will just scale the

coordinate function x(t) by the constant driving magnitude. Non-linear dynamics is the

study of systems that have coordinates, legislated by equations other than the linear equation.

In other words, inputting a function into the system will not simply scale and translate that

function.

A common property of non-linear systems is the exhibition of unpredictable behavior.

Chaos theory describes the transition from predictable, often periodic behavior, into appar-

ently random, completely aperiodic behavior. More rigorously, consider a set S. A chaotic

map f : S → S obeys three laws:

1. It must be sensitive to initial conditions.

2. It must be topologically transitive.

3. It must have dense periodic orbits.

In other words, a chaotic map is unpredictable, indivisible, and possesses some regularity.

Unpredictability stems from its sensitivity to initial conditions, topological transitivity pre-

vents the map from dividing S into non-interacting sets under f , and within the apparent

randomness, there exists regularity in the form of densely distributed periodic points.

To comprehend chaos theory, we choose to study deterministic systems with small non-

linear components. Then as we increase the parameters corresponding to the non-linear

behavior, we may study various qualities of the system such as how the phase space changes

as a function of this variable. In this experiment, we use some electronically simulated non-

linear systems to explore important principles of chaos theory and non-linear dynamics. We

will study flow functions and Liapunov exponents, return and Poincar maps, the bifurca-

tion route to chaos and the Fiegenbaum ratio, and fractal attractors and measures of their

information dimension.
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2 Theory

2.1 Attractors, Flows, and Lyapunov Exponents

Consider a system that varies as a function of time. We call this system dynamical. The

system can be described by a set of variables, which in their most rudimentary form are

the coordinates q⃗, and their respective conjugate momentum p⃗. As the system propagates

through time, the dynamical variables, q⃗ and p⃗, follow a path through the system’s phase

space – a mathematical space with as many dimensions as variables, in which a single point

describes the instantaneous state of the system. This n-dimensional path is often called an

attractor and is plotted to visualize the topology of the system’s state space. Dynamical

systems fall under two categories: they are conservative if the volume of attractor remains

invariant, or they are dissipative if it decreases in time.

In the context of dynamical systems, a map is defined as an evolution function used to

discretize the dynamical system. We use a map to take the system from one time step to

the next. If the map is iterative, that is it may be applied to itself to take an additional time

step, then we call it a flow. Further, given a flow ϕt(x),

ϕt(ϕt′(x)) = ϕt+t′(x).

Consider the initial state s⃗, and a neighboring state s⃗ + ds⃗. The expansion of the flow

operator at the neighboring state, about the initial state is

ϕt(s⃗+ ds⃗) = ϕt(s⃗) + J(t)ds⃗+O(||ds⃗||2) + · · · (1)

where J is the Jacobian matrix, composed of the partial derivatives, of the flow w.r.t the

initial state. Therefore, the evolution of the state due to the flow, depending on the initial

conditions is thus determined by the eigenvalues of the Jacobian. Russian mathematician,

Aleksandr Lyapunov noticed this and defined the Lyapunov exponents

λn ≡ lim
t→∞

ln |ntheigenvalue ofJ(t)|
t

. (2)

Here we present a more rigorous mathematical analysis building on our understanding

of flows. Consider a set of ordinary differential equations (flows) on a vector of variables

ẋ = f(x, µ) (3)
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where µ is a control parameter for the non-linear behavior. A steady-state solution (limt→∞)

is given by

f(x0, µ) = 0. (4)

The stability of this solution, as it relates to the non-linear behavior determined by µ, may

be gathered by perturbing about x0:

δẋ(i) = Jijδx
(j) and Jij =

∂f i

∂xj
|x=x0 . (5)

The eigenvalues of Jij give the growth rates of perturbations. For initial amplitudes A, and

eigenvectors u,

δx ∝
∑
n

Ane
λntu(n). (6)

Positive λ indicates the path through state-space stretches in the dimension of that re-

spective partial derivative of the Jacobian. Negative λ indicates the opposite – a contraction

in that dimension. Therefore, stability requires all Reλ < 0. As µ changes, instability onsets

when the largest eigenvalue passes 0, say at µc. Further, we can infer that if λn > 0 ∀ λn ⊂ λ,

then the path through state-space diverges. If λn < 0 ∀ λn ⊂ λ, then the path through state-

space converges. Interestingly, if
∑

n λn < 0 and max{λ} > 0, the path is constricted in

some dimensions, stretched in others, and the significant dependence on the initial condition

of the stretched dimension guarantees chaotic behavior.

2.2 Bifurcation and the Feigenbaum Ratio

As mentioned in the introduction, chaotic systems (perhaps surprisingly) possess peri-

odicity. Consider a periodic system initially with period τ . In phase space, the periodicity is

captured by an elliptical orbit. A stable, periodic system predictably moves along this path

over time. We can see this is the case if the Jacobian in Eq. 1 has eigenvalues λ ≤ 0. These

systems are governed by linear differential equations when we take the flow function to be a

continuous derivative.

For systems governed by non-linear differential equations, changes in a parameter related

to the non-linear behavior may result in a qualitative change in the long-time solution.

Generally, this process is referred to as bifurcation. In the context of this report, we are

concerned with the periodic system transitioning from its deterministic period τ , to its

chaotic period via period-doubling bifurcation.
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Consider a time-periodic (or limit cycle) flow with a period τ and steady-state solution

x = x0(ω0t) and x0(ϕ+ 2π) = x0(ϕ). (7)

Similar to Bloch’s theory for wave functions in a periodic potential, we seek a solution of the

form

x = x0(ω0t) + eλtδx(ω0t). (8)

Note that for complex eigenvalues, Im λ gives the oscillation frequency of the linear pertur-

bation. We can always simplify the second term to be the product of a redefined periodic

δ̄x, times the exponential with Im λ bounded by −ω0/2 < Im λ < ω0/2. Let ω
′ = Im[λ] s.t.

eiω
′tδx = ei(ω

′−ω0)t
[
einω0tδx

]
= ei(ω

′−nω0)tδ̄x (9)

There are three possible behaviors of such a system, depending on its eigenvalues.

1. A real eigenvalue crosses the imaginary axis of the complex plane (Re λ changes sign).

In this case, a new period solution of the same frequency developed at the bifurcation

and there are the same possibilities for the bifurcation behavior as for the initial system.

2. A pair of complex eigenvalues cross the imaginary axis. In the linear approximation,

oscillations at the new frequency developed, but non-linear behavior is still complicated.

It can be shown that the limit cycle grows near this bifurcation point.

3. A complex eigenvalue at the bound Im λ = ω0/2 crosses the imaginary axis. At the

base frequency

δx(nτ) = eRe[λ]nτ (−1)n (10)

which is an oscillating perturbation with increasing magnitude. This implies a periodic

orbit but with twice the period.

Case 3. will be used in several examples to show how bifurcation can lead to chaos. As

we change the non-linear variable, we expect to saturate some eigenvalues at their bounds

and some may change the sign of their real components resulting in several period-doubling

bifurcations. With each attempt, however, we also expect the system to increase in com-

plexity due to case 2. While the system remains somewhat periodic, we expect to observe

’windows’ of time in which the system exhibits deterministic behavior, which shrinks in cor-

relation with non-linearity. Eventually, we may expect the complexity to overwhelm the

system, and visually chaotic behavior will occur.
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Interestingly, there is a universal constant describing the bifurcation rate for a chaotic

system. we define the discrete set of non-linear variables for which bifurcation occurs as µ,

such that the Feigenbaum ratio may be calculated as

δ = lim
n→∞

µn+1 − µn

µn+2 − µn+1

= 4.669201609 · · · . (11)

That is, the distance between the second and third bifurcation is roughly one-fifth of the

distance between the first and the second. The constant is measured to a higher accuracy for

higher degree bifurcations as µn becomes more sensitive (and thus more precision is required)

at higher n.

Feigenbaum defined another constant to relate the width of bifurcation tines or the

distance between bifurcated states. For a tine width wn, with subtine widths wn+1,

α = wn/wn+1 = 2.502907875 · · · . (12)

2.3 Note: Recurrence Maps and the Poincaré Section

Given the periodic orbit described above, an intersection of this path with a lower-

dimensional subspace (i.e. a hyperplane produced by fixing a single variable) is called a

Poincaré map. The subspace is referred to as a Poincaré section and is often used to under-

stand how the orbit returns to an initial set of parameters. One can define a map from one

point on the Poincaré section to another, generally called a recurrence map. Although it is

not required to understand the proofs included in this report, we encourage the reader to

see Ref. [4].

2.4 Fractals and Information Dimension

As we explored in our discussion of the bifurcation route to chaos, chaotic systems have

an associated periodicity. This periodicity is evident in the system attractor or its accessible

volume in phase space. These attractors are said to be periodically dense, or that periodicity

exists both in the attractor topology and about some local point along the attractor. These

characteristics are inherent to what chaos theorists call fractals. In general, a fractal is a

geometric shape with arbitrarily small details. In the context of dynamical systems fractal

behavior describes decreasing the initial conditions of the system, and observing a similar

attractor on a smaller scale.
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If we scale finite geometric figures like a square or a sphere, we have well-determined

ways of predicting how the qualities of the figure change – changing the square’s side length

by a factor of two changes its area by four, changing the sphere’s radius by a factor two

changes its volume by a factor of eight. We can relate the effect of scaling to the figure’s

final form by the dimension of the figure – an n-dimensional finite object scaled by x has a

resulting volume of xn. Fractals do not behave in such a deterministic manner, so since their

invention nearly 50 years ago, many mathematicians have proposed new ways of defining

their dimensionality.

In the context of chaotic systems, the fractal attractor’s information dimension is often

measured. Like the dimension of a finite-dimensional figure relates to how the figure scales

with length, the information dimension captures a very similar intuition. Consider the

Shannon entropy of a discrete random variable Z

H(Z) =
∑

z∈support(PZ)

PZ(z) log
1

PZ(z)
, (13)

where PZ(z) is the probability of Z at Z = z and the support of PZ is the subdomain of Z

at which P (z) > 0. For a real random variable χ, and a positive integer m we create a new

discrete random variable

⟨χ⟩m = floor[mχ]/m. (14)

Then the information dimension is defined as

d(χ) = lim
m→∞

H(⟨χ⟩m)
logm

. (15)

We are interested in measuring the information dimension. To do so, we will measure

the density of state space by sampling the number of points in a range of state space around

a variable x from x − ϵ to x + ϵ. Increasing the window size by enlarging ϵ should result

in more states. Taking the rate of change of the state density as a function of increasing

the window, or the size of the attractor section, will give us a measure of the information

dimension. Technically, we denote the count function C(ϵ) and the associated information

dimension

d =
∆ log2C(ϵ)

∆ log2 ϵ
. (16)
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3 Methodology

The following experiments are run on a personal computer running the Windows oper-

ating system. The primary tools are the data acquisition computer interface card and the

LabView software package, although similar results may be achieved using another plotting

software like the Matplotlib library for Python. LabView offers a plethora of programs, de-

noted Virtual Instruments, for data acquisition and analysis. We have written some custom

interfaces to visualize simulations exhibiting the chaotic behavior discussed above.

3.1 Apparatus

This experiment uses the following equipment:

1. SRS DS 345 Function Signal Generator

2. Computer Interface Box

3. DAQ Card (in computer)

4. Main control Chasis (”NLD-86-35Rev2002”)

(a) Bouncing Ball Circuit

(b) Lorenz Attractor Circuit

5. Oscilloscope

6. Power Supply Box (5V and ±15V)

7. Custom interfaces using National Instruments’ LabView software.

3.2 Procedure

The circuits examined herein are powered by the PC, so the parameter over which we

will explore bifurcation will be the computer-controlled output voltage. A plot of the general

experiment diagram is visualized in Fig. 1.
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Figure 1: Block diagram of the experimental procedure, taken from Ref. [1]

4 1D Maps and Cob-Web Plots

To explore the non-linearity as a function of a single parameter, we have made an

interface for plotting examples. The plots produced are called cob-web plots and they help

visualize how a system governed by the equation at hand may progress as it takes steps

according to the flow function

ϕ(f, x) = Y (f(x)) and Y (x) = x. (17)

Each step of this flow performs an iteration of the map f . If the map is stable, the plot

converges to the point (f(x0), f(x0)) for a steady solution x0. However, if the non-linear

parameter is sufficiently large, we expect the converges to take many more steps, and perhaps

even diverge.
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4.1 Parabolic Map

Our first experiment is conducted on a one-dimensional system – the quadratic map with

a ’chaotic’ prefactor, r. The quadratic map on the discrete xn variable is given by

xn+1 = rxn(1− xn). (18)

When xn is bounded [0,1], and we assume r is bounded by (0, 4], such that if 1 < r < 3, xn

undergoes a stable convergence to x0 = (r − 1)/r. We plot both the cob-webs in Fig. 2 and

the system’s bifurcation as a function of r in Fig. 3.

Notice that the system takes on 2 and 4 coherent states after the first and second

bifurcations at r = 3 and 3.45 respectively, but begins to take on an arbitrary number of

states beyond some critical value rc ≈ 3.57. By taking the ratio of the difference in the

bifurcation points, we can approximate the Feigenbaum ratio. The approximation using the

first two bifurcations gives δ ≈ 4.74, whereas the second and third bifurcations give δ ≈ 4.32

which are both reasonably close.

4.2 Henon Map

The Henon map is another non-linear system, but of two parameters instead of one. It

is given by

H(x, y)n =

{
xn+1 = y2n + 1− Axn

yn+1 = Bxn

(19)

We plot the bifurcation of the Henon map in Fig. 4 and calculate the Feigenbaum ratio

to be δ ≈ 4.897 for the distance between the first two bifurcations over the next second and

the third.

5 Continuous-time Systems

5.1 Resonator with PN Junction

The first physical system we will study is the driven, damped, non-linear oscillator.

The dampening implies a dissipative system; a non-linear response makes this oscillator

anharmonic. The circuit is composed of an inductor, a resistor, a PN junction, and driving
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Figure 2: Cob-web plots of the parabolic map show slowing converges at a greater chaotic
parameter. the parameter r is set to about 0.6, 2.9, and 3.7 in the top, middle, and bottom
plots respectively.

sinusoidal voltage. A diagram is given in Fig. 5.

The PN junction serves as the non-linear element in two ways. It has an exponential
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Figure 3: Bifurcation plot of the quadratic map.

Figure 4: Bifurcation plot of the Henon map.
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Figure 5: The circuit diagram for the oscillator studied in the first experiment, taken from
Ref. [1].

I-V curve,

Id(Vd) = I0(e
eV d/kBT − 1) (20)

where Vd is the voltage across the diode. And its capacitance, which completes the RLC

circuit, changes as a function of voltage.

C(Vd) =

 C0(e
eV d/kBT − 1) if Vd > 0

C0√
1−(eeV d/kBT−1)

if Vd ≤ 0
(21)

From Ref. [1], we plot the capacitance of a typical diode in Fig. 6.

For small Vd, the diode behaves almost identically as a capacitor, so we expect a perfect

sinusoidal response from the RLC oscillator with frequency ω ≈ 1/
√
LC0. When the driving

voltage increases and while the circuit remains approximately harmonic, we expect multiples

of ω to begin to show in the signal. At some even larger driving voltage bifurcation occurs

so the signal shows periodic behavior with frequency ω/2. As the driving voltage further

increases, so does Vd, and the circuit exhibits complex behavior that is numerically calculable,

but challenging to grasp intuitively. To get a better sense of how the system’s state changes

with the driving voltage, we will shift from the time domain to phase space.

Consider the equations of motion for the PN-junction’s current, voltage, and phase:

İ =
V0 −RI − Vd

L
(22)
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Figure 6: The capacitance of a PN junction diode changes as a function of the voltage across
the junction. Plot taken from Ref. [6].

V̇d =
I − Id(Vd)

C(Vd)
(23)

θ̇ = ω. (24)

We can map the variables (I, Vd, θ) onto a state-space, and their time-dependent path may

be given by a function within state-space such that:

˙⃗q = F (q⃗) F : Rn × R → Rn (25)

Recall that q⃗ uniquely defines the system at some instance in time, however, ˙⃗q may differ at

some q⃗ and will determine in which direction through state-space the system will proceed.

To learn the system’s path through state-space, we may sample one of the variables,

and plot it with a higher dimensional embedding. For example, if we sample the diode’s

current, we can embed the current in N -dimensional space where the coordinates are r⃗i =

(Ii, Ii+1 · · · Ii+N−1)
T . This reveals the topology of F , which relates how the current changes

from one time step to the next.
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5.2 Bouncing Ball Simulation

The bouncing ball problem is a one-variable, two-parameter system governed by Newto-

nian mechanics. Consider a ball bouncing under the influence of gravity on a harmonically

oscillating table. The two parameters of the system are the dissipation due to the impacting

the table, and the ratio of the acceleration due to the table over that due to gravity.

After N impacts, the ball bounces off the table with velocity vN , and the table has phase

ΦN . The equation for such a system is

A0 sinΦN + vN t− gt2/2 = A0 sin(ωt+ ΦN). (26)

After the next time step, parametric recursion relations tell us that the phase of the table

and the velocity of the ball are given by

ΦN+1 = ΦN + ωt (27)

vN+1 = K(gt− vN) + A0ω(1 +K)(ΦN + ωt), (28)

where K is the restitution coeffiecient determined by Eq. 28. We define the parameter

α = Aω2/g to be the normalized table acceleration, which in addition to 0 < K < 1 defines

the parameters of the system.

Electronically, the system may be represented by a fairly complex circuit, shown in Fig.

7. Analysis of the circuit is out of the scope of this experiment, but we should consider two

physical analogies important to our understanding of the system.

When the ball is in free fall, current is used to simulate the negative gravitational force as
d2x
dt2

= g is analogous to current leaving the S1 node such that the second and third op-amps

produce an output voltage of Vo(t) =
1

R2C2

∫
Vc(t)dt, where Vc is the voltage across C, the

capacitor in parallel with the first op-amp.

The ball impacts the table when current flows into the S1 node, which provides a large

current to (almost) instantaneously invert the voltage on C without affecting the charges on

the other capacitor, C2. This is analogous to the velocity inversion during a perfectly elastic

collision against the table. A resistor in series with the rectifier (inset) dissipates the signal

as if the bounce was slightly inelastic.

Further analysis reveals that the relaxation time is given by τ = R2C2C/Cf , such that

the restitution coefficient is K = e−π/2τω′
, where π/ω′ is the time interval of contact. Finally,

the ratio of the acceleration due to the table over that of gravity may be written as α =
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Figure 7: Circuit diagram of the bouncing ball simulation. Inset is the rectifier diode whose
operating state determines the state of the ball. (Taken from Ref. [2])

R2C2CVdω
2/i, for table oscillation amplitude and frequency, Vd and ω, and current i.

5.3 Results

The bifurcation of the PN junction circuit is plotted in Fig. 8. The Feigenbaum constant

is approximated as δ ≈ 2.404 using the first two bifurcations, and δ ≈ 2.973 using the

next two. Although our sample is small, it is promising that the value approaches the true

Feigenbaum ratio with a second bifurcation. For this system, the other Feigenbaum constant

is approximated ot be α ≈ 2.31 using the first two bifurcations, and α ≈ 4.67 using the next

two.

We measure the information dimension of this system’s attractor by sampling as men-

tioned in Sec. 2.4, fitting a line to the data over ϵ, averaging the slopes for samples taken

about 1-10V, and at 2000, 3500, and 5000Hz, for a total of 30 slope measurements. We find

the information dimension to be d = 0.9749 with a standard deviation of σd = 0.1239.

The bifurcation plot of the bouncing ball simulation is plotted in Fig. 9. We cannot

approximate the Feigenbaum ratios of the bifurcation parameter or the tine width, as they

are both poorly defined in the plot and the data. We measure the information dimension of

the Bouncing Ball simulation using the same strategy as the PN junction experiment. We

measure d = 1.0444 with standard deviation σd = 0.4059.
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Figure 8: Bifurcation of the RLC circuit with a non-linear PN junction element (top), and
custom plotting tools used to estimate the Feigenbaum constants for such a system (bottom).
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Figure 9: Bifurcation plot of the bouncing ball simulation. Notice the lack of well-defined
bifurcation points and chaos amidst steady states. For such a system, the fractal may not
have a very accurate information dimension or follow the behaviors predicted by Feigenbaum.
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6 Conclusion

In this report, we introduce the reader to several concepts of Chaos Theory used to un-

derstand non-linear systems. In particular, discrete and continuous systems and the behavior

of their flow through state space are discussed. We qualify the topology of the attractors of

these systems by the eigenvalues of their respective Jacobian matrices, which gives way to

the important Lyapunov exponents. Further, we explored the higher dimensional geometry

of these attractors through fractal analysis, using the information dimension as our metric.

We exhibit the bifurcation route to chaos in several digital and electronic simulations, and

make estimates for the Feigenbaum ratios, although we are still limited by the abrupt chaos

of these systems, preventing more accurate measurements.
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